SYNTHESIS AND CATALYTIC ACTIVITY OF SPACED FERROCENE OXAZOLINES

Petr ŠTĚPNIČKA ${ }^{a 1, *}$, Tomáš BAŠE ${ }^{a 2}$, Ivana CísAŘOVÁa ${ }^{a 3}$, Jiří KUbišTA ${ }^{b}$, Štěpán Vyskočíl ${ }^{c 1}$ and Martin ŠTícha ${ }^{c 2}$
${ }^{a}$ Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague 2, Czech Republic; e-mail: ${ }^{1}$ stepnic@natur.cuni.cz, ${ }^{2}$ tbase@centrum.cz, ${ }^{3}$ cisarova@natur.cuni.cz
${ }^{b}$ J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic; e-mail: kubista@jh-inst.cas.cz
${ }^{c}$ Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12840 Prague 2, Czech Republic; e-mail: ${ }^{1}$ stepanv@natur.cuni.cz, ${ }^{2}$ sticha@natur.cuni.cz

Received April 14, 2003
Accepted May 12, 2003

Chiral 2-[\{N-aryl-N-(ferrocenylmethyl)amino\}methyl]-4-(1-methylethyl)-4,5-dihydroxazoles with various substituents at the aryl ring were prepared by alkylation of N -(ferrocenylmethyl)anilines, $\mathrm{FcCH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{R}$ (Fc = ferrocenyl), with (S)-2-(chloromethyl)-4-(1-methyl-ethyl)-4,5-dihydrooxazole. The oxazoles, substituted anilines, and the precursors of the latter, the respective Schiff bases $\mathrm{FcCH}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{R}$, were characterized by standard methods and further studied by mass spectrometry. The oxazoles were further tested as chiral auxiliaries in the addition of diethylzinc to benzaldehyde but showed only negligible asymmetric induction (ee ca 10%), most likely due to steric hindrance of the nitrogen donor centres. This steric restriction seems to be lowered upon replacement of the substituted phenyl group with a benzyl substituent; compounds $\mathrm{FcCH}_{2} \mathrm{NHCH}_{2} \mathrm{Ph}$ and (R)- $\mathrm{FcCH}_{2} \mathrm{NHCH}(\mathrm{Me}) \mathrm{Ph}$ are easily alkylated yielding $\left[\mathrm{FcCH}_{2} \mathrm{NMe}_{2}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\right] \mathrm{l}$ (9) and 2-[N -(1-phenylethyl)N -(ferrocenylmethyl)amino\}methyl]-4-(1-methylethyl)-4,5-dihydroxazole (10), respectively. Solid-state structures of $\mathrm{FcCH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{R}(\mathrm{R}=2-\mathrm{Me}$ and $4-\mathrm{Cl})$, 9, and $\mathbf{1 0}$ have been determined by single-crystal X-ray diffraction.
Keywords: Oxazolines; Ferrocenes; Mass spectrometry; Organozinc reagents; Enantioselective catalysis; Crystal structure; Chiral ligands; Schiff bases; Imines; Amines; X-ray diffraction.

Chiral 2-ferrocenyl-4,5-dihydrooxazoles (henceforth referred to as corresponding oxazolines) having a functional group on the cyclopentadienyl ring in a position adjacent to the oxazolinyl moiety (typel) or on the other ring (type II) have been used with success as ligands in a number of catalyzed enantioselective reactions ${ }^{1}$. More recently, the class of ferrocenyloxazoline ligands has been further extended to 4-ferrocenyloxazolines ${ }^{2}$
(type III), which also proved to be efficient ligands for asymmetric catalysis, while some non-functionalized ferrocenyloxazolines were used as electrochemical sensors ${ }^{3}$.

I

II

III

In addition, substituted 2-ferrocenyloxazolines I can be used as excellent starting materials for the preparation of planar-only chiral ferrocene compounds as they are readily accessible in stereomerically pure form via diastereoselective ortho-lithiation/functionalization of C-chiral oxazolines $(I, Y=H)$, and the chiral auxiliary, the oxazoline ring, can be afterwards hydrolyzed and subsequently modified ${ }^{4,5}$.

In this contribution, we describe the synthesis of variously substituted, chiral 2-[\{N-aryl-N-(ferrocenylmethyl)amino\}methyl]-4-(1-methylethyl)-4,5-dihydroxazoles and of 2-[\mathbb{N}-(1-phenylethyl)-N-(ferrocenylmethyl)ami-no\}methyl]-4-(1-methylethyl)-4,5-dihydroxazole, in which the additional donor (nitrogen) atom and the oxazoline ring are separated by a methylene group. The ligands possess a chiral centre in position four of the the oxazoline nitrogen atom inherent in (S)-valinol, the ferrocene unit acting only as an electron-donating, sterically well-defined stereodiscriminating substituent. We also report catalytic activity of the former ligands in the addition of diethylzinc onto benzaldehyde and discuss the obtained catalytic results with regard to the solid-state structures of several intermediates and ligands, and also some model reactions.

RESULTS AND DISCUSSION

2-[\{N-Aryl-N-(ferrocenylmethyl)amino\}methyl]-4-(1-methylethyl)-4,5-dihydroxazoles

Synthesis and Characterization
Synthesis of the title compounds bearing various substituent at the aryl and oxazoline rings, 5 and 6, is outlined in Scheme 1. The starting amines 2 were prepared using an established procedure: by reacting ferrocene-
carboxaldehyde with ring-substituted anilines to give the respective Schiff bases 1^{6} and subsequent reduction of aldimines $\mathbf{1}$ with NaBH_{4} in methanol. (Chloromethyl)oxazolines 4 were obtained by condensation of the respective β-aminoalcohols with glycolic acid under azeotropic water removal ${ }^{7}$ and chloration of the resulting (hydroxymethyl)oxazolines $\mathbf{3}$ with

1a-h
NaBH_{4}

5a, 6a,c,d,f-h

2a-h

$$
\begin{aligned}
& 5\left(\mathrm{R}^{2} / \mathrm{R}^{3}=\mathrm{Me} 2\right) \\
& 6\left(\mathrm{R}^{2} / \mathrm{R}^{3}=\mathrm{i}-\mathrm{Pr} / \mathrm{H}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{R}^{1}= & \mathrm{H}(\mathbf{a}), 2-\mathrm{Me}(\mathbf{b}), 3-\mathrm{Me}(\mathbf{c}), 4-\mathrm{Me} \mathrm{(d)} \\
& 4-\mathrm{MeO}(\mathbf{e}), 4-\mathrm{F}(\mathbf{f}), 4-\mathrm{Cl}(\mathbf{g}), 4-\mathrm{Br}(\mathbf{h})
\end{aligned}
$$

Scheme 1

$\mathrm{PPh}_{3} / \mathrm{CCl}_{4}$ mixture 8 (Scheme 2). As the last step, oxazolines 5 and 6 were synthesized by alkylation of N -(ferrocenylmethyl)anilines $\mathbf{2}$ with (chloromethyl)oxazolines 4 (Scheme 1).

$$
\mathrm{R}^{1} / \mathrm{R}^{2}=\mathrm{Me} 2(\mathbf{a}), \mathrm{H} / \mathrm{i}-\operatorname{Pr}(\mathbf{b})
$$

Scheme 2

Unfortunately, the molecule-assembling alkylation step proved the most difficult in the reaction sequence. The alkylation of the simplest amine 2a with non-chiral oxazoline $\mathbf{4 a}$ to give $\mathbf{5 a}$ was initially attempted by reacting the educts in acetonitrile, ethanol or N, N-dimethylformamide with or without added base $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}\right)$ at room temperature or by deprotonation of $\mathbf{2 a}$ with LiBu followed by an addition of $\mathbf{4 a}$. In neither case, however, the alkylated product was detected by thin-layer chromatography, MS and NMR spectra. Finally, the alkylation reaction was effected by heating a 2a-4a mixture (1:2 molar ratio) without a solvent in the presence of solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ (excess) for 36 h to 100 or $150{ }^{\circ} \mathrm{C}$ (temperature in bath) under argon. Oxazolines 5 and $\mathbf{6}$ were then obtained using a similar procedure: a mixture of amine 2, oxazoline 4 (2 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 equiv.) was heated under argon to $80-90^{\circ} \mathrm{C}$ for 48 h . The reaction produces complex mixtures from which the oxazolines were isolated by repeated column chromatography; only compounds 5, and 6a, 6c, 6d, $\mathbf{6 f}-\mathbf{6 h}$ could be isolated in pure form. The reluctance of amines $\mathbf{2}$ to undergo the N -alkylation can be ascribed to steric factors, particularly to bulkiness of the substituents at the nitrogen atoms and possibly also to the presence of the conjugated electron-withdrawing aryl group (see below).

All compounds were characterized by spectral methods (NMR, IR and mass spectra) and elemental analysis (either standard or from highresolution mass spectra). The Schiff bases, which were obtained as dark orange solids, exhibited typical strong band due to the $v_{C=N}$ stretching at ca $1620 \mathrm{~cm}^{-1}$ in their IR and signals due to the aldimine moiety at δ_{H} ca 8.3, δ_{C} ca 160 in the NMR spectra. Amines $\mathbf{2}$ are yellow solids, showing broad v_{NH} bands in IR spectra and a broad resonance of the NH proton at δ_{H} 3.5-3.9 in ${ }^{1} \mathrm{H}$ NMR spectra. The incorporation of the oxazoline unit to form oxazolines 5 and 6 is best indicated by the ${ }^{13} \mathrm{C}$ NMR resonance of the pivotal carbon within the oxazoline ring at δ_{C} ca 164 . Additionally, the presence of a chiral centre in 6 makes all ferrocene CH groups and the methylene protons, which are observed as degenerate (enantiotopic) signals in the case of the amines and Schiff bases, non-equivalent (diastereotopic).

M ass Spectrometry

All the three series of compounds (Schiff bases, amines and oxazolines) were studied by mass spectrometry. As shown in Scheme 3 (top) for 1a, molecular ions of Schiff bases ($\mathbf{1}^{\bullet+}$) decompose by either successive elimination of cyclopentadienyl radical ($\mathbf{1 a \cdot}{ }^{+} \rightarrow \mathrm{m} / \mathrm{z} 224$) and the iron atom ($\mathrm{m} / \mathrm{z} 224 \rightarrow$ 168), or by an elimination of PhNC molecule to give ferrocene ion radical
(m/z 186), which fragments by a consecutive loss of its two cyclopentadienyl rings. The fragmentation of the amines, demonstrated for 2a in Scheme 3 (bottom) is different: the molecular ion 2a*+ eliminates benzene molecule ($\mathbf{2 a ^ { + }} \rightarrow \mathrm{m} / \mathrm{z} 213$) or an aniline radical PhNH^{\bullet} to give ferrocenylmethyl cation (or a product of its rearrangement; 2a+ $\rightarrow \mathrm{m} / \mathrm{z}$ 199). The former fragmentation route continues by a loss of HCN molecule to give ferrocene ion radical which fragments as given above. Thus, the two pathways virtually merge at the fragment ion $\left[\mathrm{FeC}_{5} \mathrm{H}_{5}\right]^{+}(\mathrm{m} / \mathrm{z} \mathrm{121})$.

Scheme 3
The prominent fragmenation processes for Schiff bases 1 (top) and the respective amines 2 (bottom)

Oxazolines 5 and $\mathbf{6}$ (see Scheme 4 for fragmenation of 6a) fragment upon electron impact by a loss of the unsubstituted cyclopentadienyl ring, a cleavage of the C-N bond to produce ions at $\mathrm{m} / \mathrm{z} 199$ due to $\left[\mathrm{FcCH}_{2}\right]^{+}$or an isomeric species, or give rise to ions isobaric with the respective Schiff base by a formal elimination of the corresponding 2-methyloxazoline from the molecular ions $\mathbf{6}^{\cdot+}$. The ions isobaric with $\mathbf{1}^{\bullet+}$, which dominate the spectra of oxazolines $\mathbf{5}$ and $\mathbf{6}$, further fragment as mentioned above for Schiff bases 1 and, hence, are most likely structurally similar to those originating from ionization of the Schiff bases.

Scheme 4
Fragmentation scheme of oxazolines 5 and $\mathbf{6}$ (shown for 6a)

Catalysis

Since its discovery ${ }^{9}$, enantioselective addition of diorganylzinc reagents to aldehydes has become an established tool for the synthesis of chiral secondary alcohols ${ }^{10}$ and numerous ferrocene ligands ${ }^{11}$, including functionalized ferrocenyloxazolines ${ }^{11 b-11 e}$, were successfully used as chiral catalysts in this reaction.

Testing chiral oxazolines 6 as chiral auxiliaries (2.5 mole \%) in addition of diethylzinc to benzaldehyde (Table I, Scheme 5) revealed that com-

Scheme 5

Table I
Addition of diethylzinc to benzaldehyde ${ }^{a}$

Entry	Ligand	Yield, \%	Enanatiomer ratio $^{\text {b }}$
1	$\mathbf{6 c}$	36	$55: 45$
2	$\mathbf{6 d}$	47	$54: 46$
3	$\mathbf{6 g}$	62	$55: 45$
4	$\mathbf{6 h}$	73	$56: 44$

[^0]pounds $\mathbf{6 c}, \mathbf{6 d}, \mathbf{6 g}$, and $\mathbf{6 h}$ exhibit only negligible asymmetric induction, whilst $\mathbf{6 a}$ and $\mathbf{6 f}$ gave under identical conditions intractable mixtures containing no 1-phenylpropan-1-ol according to GC-MS analysis. The observed poor catalytic activity of the oxazolines contrasts sharply with the previous reports about a very high efficiency of chiral, functionalized ferrocenyloxazolines in this reaction ${ }^{6,11}$ and most likely reflects a hindered accessibility of the donor nitrogen atoms, in accordance with difficulties encountered in the alkylation of amines 2 (see above).

Structure Determination for $\mathbf{2 b}$ and $\mathbf{2 g}$

Structures of amines $\mathbf{2 b}$ and $\mathbf{2 g}$ were determined by single-crystal X-ray diffraction. The molecular structures are shown in Figs 1 and 2 and the selected geometric data are reported in Tables II and III. The structures show no unexpected features, the individual bond and angles comparing well with those reported for the unsubstituted amine $\mathrm{FcCH}_{2} \mathrm{NHPh}$; cf. $\mathrm{C}(\mathrm{Fc})-\mathrm{C}(11) 1.508(5), \mathrm{N}-\mathrm{CH}_{2} 1.438(4)$, and $\mathrm{N}-\mathrm{C}(\mathrm{Ph}) 1.387(4) \AA^{12}$.

Amine 2b crystallizes with two crystallographically independent molecules within the triclinic unit cell. The molecules show nearly identical bond distances and angles but differ slightly in the mutual orientation of

Fig. 1
A view of the molecular structure of $\mathbf{2 b}$, molecule 1 showing the thermal motion ellipsoids at the 30\% probability level and the atom labelling scheme
the phenyl and substituted cyclopentadienyl planes. The dihedral angle of the respective least-squares planes are $52.9(2)\left(44.7(2)^{\circ}\right)$ for molecules 1 (2). As indicated by the torsion angles $\tau\left(\mathrm{C}(\mathrm{Ar})-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{C}(\mathrm{Fc})\right)$ of 176.9(2) $\left(-173.6(3)^{\circ}\right)$,

Table II
Selected bond lengths (\AA)), bond angles and dihedral angles $\left({ }^{\circ}\right)$ for $\mathbf{2 b}$

Molecule 1

N1-C11	$1.457(3)$	$\mathrm{N} 2-\mathrm{C} 31$	$1.446(3)$
N1-C12	$1.389(3)$	$\mathrm{N} 2-\mathrm{C} 32$	$1.382(3)$
C01-C11	$1.500(4)$	$\mathrm{C} 21-\mathrm{C} 31$	$1.497(3)$
C13-C18	$1.505(4)$	$\mathrm{C} 33-\mathrm{C} 38$	$1.506(4)$
C11-N1-C12	$120.4(2)$	$\mathrm{C} 31-\mathrm{N} 2-\mathrm{C} 32$	$123.2(2)$
N1-C11-C01	$110.9(2)$	$\mathrm{N} 2-\mathrm{C} 31-\mathrm{C} 21$	$110.6(2)$
N1-C12-C13	$119.4(2)$	$\mathrm{N} 2-\mathrm{C} 32-\mathrm{C} 33$	$119.2(2)$
N1-C12-C17	$121.6(2)$	$\mathrm{N} 2-\mathrm{C} 32-\mathrm{C} 37$	$121.9(2)$
Fe-C(Cp) av.	$2.047(6)$		$2.045(5)$
C-C(Cp) av.	$1.421(5)$		$1.421(6)$
C-C(Ph) av.	$1.39(1)$		$1.39(1)$
C-C-C(Cp) av.	$108.0(3)$		$108.0(3)$
C-C-C(Ph) av.	$120(1)$	$120(1)$	

Fig. 2
The molecular structure of amine $\mathbf{2 g}$ drawn with 30% thermal motion ellipsoids
the ferrocenyl and phenyl substituents adopt an antiperiplanar configuration, similar to the arrangement of amine $\mathrm{FcCH}_{2} \mathrm{NHPh}$ (cf. $\tau=179.4(3)^{\circ}$, interplanar angle $\left.35.9(2)^{\circ}\right)$. The ferrocene cyclopentadienyls in $\mathbf{2 b}$ exhibit only insignificant tilts (interplanar angles 3.2(2) (1.0(2) $\left.{ }^{\circ}\right)$) and are bonded

Table III
Selected bond lengths (\AA), bond angles and dihedral angles $\left({ }^{\circ}\right)$ for $\mathbf{2 g}$

$\mathrm{C} 1-\mathrm{C} 11$	$1.498(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11$	$126.9(2)$
$\mathrm{N}-\mathrm{C} 11$	$1.455(2)$	$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 11$	$125.7(2)$
$\mathrm{N}-\mathrm{C} 12$	$1.375(2)$	$\mathrm{N}-\mathrm{C} 11-\mathrm{C} 1$	$109.2(1)$
$\mathrm{Cl}-\mathrm{C} 15$	$1.749(2)$	$\mathrm{C} 11-\mathrm{N}-\mathrm{C} 12$	$123.8(2)$
$\mathrm{N}-\mathrm{C} 12-\mathrm{C} 13$	$122.8(2)$	$\mathrm{Cl}-\mathrm{C} 15-\mathrm{C} 14$	$119.8(1)$
$\mathrm{N}-\mathrm{C} 12-\mathrm{C} 17$	$119.2(2)$	$\mathrm{Cl}-\mathrm{C} 15-\mathrm{C} 16$	$119.1(1)$
$\mathrm{Fe}-\mathrm{C}(\mathrm{Cp})$ av.	$2.040(7)$	$\mathrm{C}-\mathrm{C}-\mathrm{C}(\mathrm{Cp}) \mathrm{av}$.	$108.0(6)$
$\mathrm{C}-\mathrm{C}(\mathrm{Cp})$ av.	$1.42(1)$	$\mathrm{C}-\mathrm{C}-\mathrm{C}(\mathrm{Ph}) \mathrm{av}$.	$120(1)$
$\mathrm{C}-\mathrm{C}(\mathrm{Ph}) \mathrm{av}$.	$1.39(1)$		

Fig. 3
Solid state packing of $\mathbf{2 b}$ as viewed along the crystallographic b axis
at identical iron-ring distances Fe-Cg1 1.651(1) (1.651(1) Å), and Fe-Cg2 $1.653(2)$ (1.649(2) Å) (Cg denotes the respective cyclopentadienyl-ring centroid).

As far as bond lengths and angles are concerned, the structure of amine $\mathbf{2 g}$ does not differ much from $\mathrm{FcCH}_{2} \mathrm{NHPh}$ and $\mathbf{2 b}$. The cyclopentadienyl planes are tilted at an angle of 2.02(4) ${ }^{\circ}$ and the iron-ring centroid distances are $\mathrm{Fe}-\mathrm{Cg}(1) 1.6433(8)$ and $\mathrm{Fe}-\mathrm{Cg}(2) 1.6477(9) \AA$. The molecule, however, differs slightly from the reference compounds in conformation. The arene and the substituted cyclopentadienyl planes are nearly perpendicular (dihedral angle $85.08(6)^{\circ}$) and the configuration at the $\mathrm{N}-\mathrm{CH}_{2}$ bond slightly departs from antiperiplanar towards anticlinal $\left(\tau=164.1(2)^{\circ}\right)$.

The solid-state packings of $\mathbf{2 b}$ and $\mathbf{2 g}$ are molecular without any apparent involvement of the NH groups in hydrogen bonding. In both cases, however, the molecular assembly is aided with offset $\pi-\pi$ interactions of the phenyl rings and weak $\mathrm{C}-\mathrm{H} \cdots \pi$-ring interactions. In the case of amine $\mathbf{2 g}$, the molecules are oriented so that the exactly parallel phenyl rings are stacked into tilted columns at ring centroid distances of 5.850(1) \AA and interplanar separation of $3.71 \AA$ (Fig. 3). A similar interaction is observed also for $\mathbf{2 b}$ though with even closer contancts: ring centroid distance 5.541 (2) Å, interplanar separation $3.03 \AA$ Å.

2-[\{N-Benzyl-N-(ferrocenylmethyl)amino\}methyl]oxazolines

In order to prove our assumption that the steric inaccessibility of the nitrogen atom in amines $\mathbf{2}$ hampers the alkylation reaction and, more importantly, results in the very low catalytic efficiency of oxazolines 5 and $\mathbf{6}$, we have synthesized benzyl(ferrocenylmethyl)amines $\mathbf{8 a}, \mathbf{8} \mathbf{b}$ and further converted to ammonium salt 9 and oxazoline 10, respectively (Scheme 6), which were characterized by X-ray crystallography (see below).

Schiff bases $\mathbf{7}$ and amines $\mathbf{8}$ were obtained using the procedures described for the preparation of $\mathbf{1}$ and $\mathbf{2}$. The IR and NMR spectra of $\mathbf{7}$ and $\mathbf{8}$ correspond well to the spectra of compounds $\mathbf{1}$ and $\mathbf{2}$; however, the compounds differ in the mass spectra. The Schiff bases 7a and 7b fragment by a loss of a $\left[\mathrm{C}_{5} \mathrm{H}_{6}\right]$ fragment (possibly $\left[\mathrm{C}_{5} \mathrm{H}_{5}+\mathrm{H}\right]$) or the corresponding benzyl cations $\left(\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}\right.$and $\left[\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Me}\right]^{+}$for $\mathbf{7 a}$ and $\mathbf{7 b}$, respectively) from the molecular ions. Furthermore, the spectra show abundant signals due to " $\left[\mathrm{FcCH}_{2}\right]^{++}$, Fc^{+}(rather than [FcH] ${ }^{+}$, see above), Fe^{+}, and the benzyl cations (m/z 91 and 105, respectively). Whereas the fragmentation pathways observed for Schiff bases $\mathbf{7 a}$ and $\mathbf{7 b}$ are similar, the initial fragmentation steps of amines 8a and $\mathbf{8 b}$ differ. The molecular ions fragment, respectively, by a loss of a
cyclopentadiene molecule ($\mathbf{8 b}^{\bullet+} \rightarrow \mathrm{m} / \mathrm{z} 253$) or $\left[\mathrm{C}_{5} \mathrm{H}_{7}\right]^{{ }^{++}}$(likely $\mathrm{C}_{5} \mathrm{H}_{6}+\mathrm{H}^{+}$; 8a•+ $\rightarrow \mathrm{m} / \mathrm{z} 238$), and an elimination of benzyl cation ($\mathbf{8 b}^{\bullet+} \rightarrow \mathrm{m} / \mathrm{z} 214$) or benzyl cation together with two hydrogen atoms ($8 \mathbf{a}^{\circ+} \rightarrow \mathrm{m} / \mathrm{z} 212$). The other important ionic species ($\mathrm{PhCH}_{2}{ }^{+}$for $\mathbf{8 a} ; \mathrm{PhCH}(\mathrm{Me})^{+}, \mathrm{PhH}^{\bullet+}$ and Ph^{+} for $\mathbf{8 b}$) and the ferrocene fragments (" $\left[\mathrm{FcCH}_{2}\right]^{+ \text {", }}[\mathrm{FcH}]^{++},\left[\mathrm{FeC}_{5} \mathrm{H}_{5}\right]^{+}$, and Fe^{+}) are common to both spectra.

$7 \mathrm{a}(\mathrm{R}=\mathrm{H})$
7b ($\mathrm{R}=(R)-\mathrm{Me})$
NaBH_{4}

10

$\begin{array}{c}\text { for } \mathbf{8 b} \\ 4 \mathbf{b}\end{array}$
$\mathrm{~K}_{2} \mathrm{CO}_{3}$

8a,b

9

Scheme 6
Subsequent akylation of 7a with excess Mel in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ smoothly afforded the doubly methylated ammonium salt 9 in virtually quantitative yield. Oxazoline $\mathbf{1 0}$ was obtained by alkylation of $\mathbf{7 b}$ with $\mathbf{4 b}$ in the presence of a base as given above. In electron-impact mass spectra, the molecular ion $\mathbf{1 0}^{++}$eliminates a cyclopentadienyl radical ($\rightarrow \mathrm{m} / \mathrm{z} 379$), $\mathrm{PhCH}(\mathrm{Me})^{+}$cation ($\rightarrow \mathrm{m} / \mathrm{z} 339$) or the oxazoline substituent together with one hydrogen atom ($\rightarrow \mathrm{m} / \mathrm{z} 317$). The latter process generates ions isobaric with [7b] ${ }^{++}$, which fragment similarly to the ions resulting by ionization of the Schiff base.

Crystal Structures of $\mathbf{9}$ and 10

The structure of ammonium salt 9 is shown in Fig. 4 and the selected geometric parameters are listed in Table IV. Compared to the solid-state structure of an analogous amine, $\mathrm{FcCH}_{2} \mathrm{NHCH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)^{13}$, compound 9 exhibits slightly longer $\mathrm{N}-\mathrm{C}$ distances and, in accordance with a complete substitution of the nitrogen atom, the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles less different from the values expected for an ideal tetrahedral environment. The solid-state packing of $\mathbf{9}$ is molecular.

Table IV
Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $9^{\text {a }}$

Fe-Cg1	1.6442(9)	$\mathrm{N}-\mathrm{C} 11$	1.537(2)
Fe-Cg2	1.654(1)	$\mathrm{N}-\mathrm{C} 12$	$1.498(2)$
C1-C11	1.487(3)	$\mathrm{N}-\mathrm{C} 13$	1.503(3)
C14-C15	1.503(3)	$\mathrm{N}-\mathrm{C} 14$	$1.535(3)$
Cp1,Cp2	2.7(1)	$\mathrm{N}-\mathrm{C} 11-\mathrm{C} 1$	113.9(2)
Ph,Cp1	56.9(1)	$\mathrm{N}-\mathrm{C} 14-\mathrm{C} 15$	113.8(2)
$\mathrm{C}-\mathrm{N}-\mathrm{C}^{\text {b }}$	106.7(1)-110.5(2)		

${ }^{\text {a }} \mathrm{Cp1}, \mathrm{Cp} 2$ are the cyclopentadienyl rings C1-C5 and C6-C10, respectively. Cg1 and Cg2 denote the corresponding ring centroids. ${ }^{\mathrm{b}}$ The range of $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles.

Fig. 4
A view of the cation in the structure of 9 with 30% thermal motion ellipsoids

The molecular structure of oxazoline $\mathbf{1 0}$ is shown in Fig. 5, while the selected distances and angles are given in Table V. The Flack parameter (Table VI) corroborates the unchanged configuration of the chiral centres originating from (R)-1-phenylethylamine and (S)-valinol. The side chain in $\mathbf{1 0}$ is nearly perpendicular to the ferrocene unit and so are both rings at its termini (cf. the dihedral angles: Ph vs $\mathrm{Cp}(1) 82.9(1)^{\circ}$, Ox vs $\mathrm{Cp}(1) 79.5(1)^{\circ}$, and Ox vs Ph $\left.10.0(1)^{\circ}\right)$. The nitrogen atoms are located at the more open side of the chain in a pocket defined by the ferrocenylmethyl, isopropyl and 1-phenylethyl groups. The oxazoline ring is very nearly planar with the deviations of the ring atoms from their least-squares plane lower than $0.05 \AA$. The distances and angles within the ring do not deviate in any significant way from the values reported for other ferrocenyloxazolines ${ }^{14}$. The solidstate arrangement of $\mathbf{1 0}$ is essentially molecular; there are no contacts shorter than the sum of van der Waals radii between the molecules within the crystal.

Fig. 5
The molecular structure of oxazoline 10. The thermal motion ellipsoids correspond to the 30\% probability level

Conclusions

We have demonstrated a novel approach to chiral oxazoline ligands bearing the ferrocenyl group as a substituent. Unfortunately, the preparation of chiral ferrocenyloxazolines 6 suffers from difficulties in the moleculeassembling step and the resulting oxazolines are nearly inactive as chiral auxiliaries in the addition of diethylzinc to benzaldehyde. This was tentatively ascribed to steric bulk of amines $\mathbf{2}$ and oxazolines $\mathbf{5}$ and 6, which hinders the alkylation reaction and prevents effective encounters between the substrate, reagent, and oxazoline catalyst. As demonstrated by alkyl-

Table V
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{1 0}^{\text {a }}$

Fe-Cg1	$1.6573(9)$	Cp1,Cp2	$0.6(1)$
Fe-Cg2	$1.649(1)$		
C1-C11	$1.518(3)$	C1-C11-N1	$111.2(2)$
C11-N1	$1.465(2)$	C11-N1-C12	$111.6(2)$
N1-C19	$1.474(2)$	C11-N1-C19	$112.9(2)$
C19-C20	$1.531(3)$	C12-N1-C19	$117.1(2)$
C19-C21	$1.520(2)$	N1-C19-C20	$111.1(2)$
N1-C12	$1.453(3)$	N1-C19-C21	$108.3(1)$
C12-C13	$1.502(3)$	N1-C12-C13	$117.6(2)$
C13-O	$1.369(2)$	N2-C13-O	$118.1(2)$
O-C14	$1.449(3)$	C13-O-C14	$105.6(2)$
C14-C15	$1.530(3)$	O-C14-C15	$104.4(2)$
C15-N2	$1.486(3)$	C14-C15-N2	$104.2(2)$
N2-C13	$1.268(3)$	C15-N2-C13	$106.9(2)$
C15-C16	$1.543(3)$	C17-C16-C18	$111.3(2)$
C16-C17	$1.529(3)$	N2-C15-C16	$110.3(2)$
C16-C18	$1.523(4)$	C14-C15-C16	$116.2(2)$
C1-C11-N1-C12	$-72.2(2)$		
C1-C11-N1-C19	$153.5(2)$		
C11-N1-C19-C20	$-176.9(2)$		

[^1]Table VI
Crystallographic data, data collection and structure refinement for $\mathbf{2 b}, \mathbf{2 g}, \mathbf{9}$, and $\mathbf{1 0}$

Compound	2b	$\mathbf{2 g}$	$9^{\text {d }}$	10 ${ }^{\text {e }}$
Formula	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FeN}$	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{CIFeN}$	$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{FelN}$	$\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{FeN}_{2} \mathrm{O}$
M	305.19	325.61	461.15	886.76
Crystal size, mm ${ }^{3}$	$0.15 \times 0.25 \times 0.30$	$0.23 \times 0.25 \times 0.28$	$0.10 \times 0.25 \times 0.45$	$0.08 \times 0.13 \times 0.40$
Crystal description	orange plate	orange brown prism	yellow block	orange prism
T, K	150	150	150	150
Crystal sysytem	triclinic	monoclinic	monoclinic	monoclinic
Space group	P $\overline{1}$ (No.2)	$\mathrm{P}_{1} / \mathrm{n}$ (No.14)	$\mathrm{P}_{1} / \mathrm{n}$ (No.14)	P2 ${ }_{1}$ (No.4)
a, \AA; α, ${ }^{\circ}$	7.7849(2); 98.130(1)	9.6200(2); 90	13.3448(2); 90	12.8117(4); 90
$\mathrm{b}^{\prime} \AA_{\text {; }} \boldsymbol{\beta}$, ${ }^{\circ}$	9.8259(2); 93.099(1)	11.4929(2); 98.047(1)	10.8758(1); 113.1278(8)	5.7114(1); 99.639(1)
c, \AA; $\gamma,{ }^{\circ}$	20.6333(5); 111.935(1)	13.0030(3); 90	13.7043(2); 90	15.3260(5); 90
$v, \AA^{3} ; \mathbf{z}$	1439.50(6); 4	1423.48(5); 4	1829.13(4); 4	1105.61(5); 2
$\mathrm{D}_{\mathrm{C}}, \mathrm{g} \mathrm{ml}^{-1}$	1.408	1.519	1.675	1.332
F(000); $\mu(\mathrm{MoK} \alpha), \mathrm{mm}^{-1}$	640; 1.036	672; 1.234	920; 2.511	470; 0.702
$\theta_{\text {max }}{ }^{\circ}{ }^{\circ}$; completeness, \%	26.0; 98.9	27.5; 99.7	27.9; 99.6	27.5; 99.5
Collected diffractions	20807	27152	32147	19577
No. of unique diffractions	5630	3271	4360	5018
No. of observed diffractions ${ }^{\text {a }}$	4801	2972	4031	4747
No. of parameters	361	245	304	270
R, wR observed; diffractions, \% ${ }^{\text {b }}$	3.84, 9.82	2.76, 6.87	2.48, 6.30	3.06, 6.87
R, wR all data, \% ${ }^{\text {b }}$	4.82, 10.4	3.26, 7.22	2.77, 6.45	3.38, 7.01
S all data ${ }^{\text {c }}$	1.086	1.108	1.065	1.060
Residual electron density, e \AA^{-3}	0.71, -0.64	0.32, -0.40	1.15, -1.06	0.62, -0.33

[^2]ation reactions of amines 8, the difficulties in the synthesis can be circumvented by an introduction of a methylene (or analogous) spacer between the nitrogen atom and the phenyl group. This indicates a direction for a further work.

EXPERIMENTAL

All syntheses were carried under argon blanket with exclusion of the direct daylight. Toluene and xylene were dried by standing with potassium metal and distilled under argon. Methanol was dried with sodium and freshly distilled. Halogenated solvents $\left(\mathrm{CCl}_{4}, \mathrm{CHCl}_{3}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) were dried over anhydrous potassium carbonate. Solvents for crystallizations and chromatography were used without purification. Other chemicals were used as obtained from commercial sources.

NMR spectra were recorded on a Varian UNITY Inova 400 spectrometer $\left({ }^{1} \mathrm{H}, 399.95 ;{ }^{13} \mathrm{C}\right.$, 100.58 MHz) at 298 K . Chemical shifts (δ, ppm) are given relative to internal tetramethylsilane, coupling constants (J) are given in Hz. NMR signals were assigned with the aid of ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-COSY, ${ }^{13} \mathrm{C}$ APT, ${ }^{13} \mathrm{C}$ gHSQC and ${ }^{13} \mathrm{C}$ gHMBC experiments. For clarity, the symbol Ox indicates an oxazolinyl moiety (e.g., in i-PrOx, $\mathrm{Me}_{2} \mathrm{Ox}$); $\mathrm{CH}_{2} \mathrm{Ox}$ thus denotes the methylene group attached to the oxazoline ring while $\mathrm{CH}^{\mathrm{Ox}}$ and $\mathrm{CH}_{2}{ }^{\mathrm{Ox}}$ stand for the methine and methylene groups, respectively, within the ring. IR spectra ($v, \mathrm{~cm}^{-1}$) were recorded on an FT IR Nicolet Magna 650 instrument in the range of $400-4000 \mathrm{~cm}^{-1}$. Melting points were determined on a Kofler apparatus and are uncorrected.

Electron ionization mass spectra were recorded on a VG 7070E spectrometer (conditions: electron energy 80 eV , ion source temperature $200^{\circ} \mathrm{C}$). The samples were introduced via a direct insertion probe. Accurate mass (HR MS) measurements were performed by the peak matching technique using perfluorokerosene as the internal mass scale standard. GC MS were performed on a Finnigan MAT INCOS 50 mass spectrometer interfaced to a Varian 3400 gas chromatograph (SPB-5 capillary column, He carried gas). The mass spectra were acquired at ionizing electron energy 70 eV .

Synthesis of Schiff Bases 1a-1h. General Procedure

Ferrrocenecarboxaldehyde and the appropriate aniline (molar ratio 1:1) were dissolved in dry toluene (50 ml). Catalytic amount of $\mathrm{K}_{2} \mathrm{CO}_{3}(5-10 \mathrm{mg})$ was added, the reaction vessel was flushed with argon, and the mixture was refluxed under Dean-Stark trap for 24 h . Then, the reaction mixture was treated with $4 \AA$ molecular sieves (ca 25 ml , beads 8-12 mesh) while hot and stirring was continued at room temperature for 48 h . Filtration and evaporation under reduced pressure afforded the corresponding Schiff base in pure form.
$\mathrm{FcCH}=\mathrm{NPh}$ ($\mathbf{1 a}$). Starting from $\operatorname{FcCHO}(4.92 \mathrm{~g}, 23 \mathrm{mmol})$ and aniline ($2.10 \mathrm{ml}, 23 \mathrm{mmol}$), the general procedure gave $\mathbf{1 a}$ as an orange solid ($4.07 \mathrm{~g}, 91 \%$). El $\mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative abundance): 290 (21), 289 (100, $\mathrm{M}^{+\dagger}$), 288 (8), 287 (9), 224 (27, [$\left.\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{5}\right]^{+}$), 223 (12), 222 (8), 214 (11), 198 (9), 196 (5), 186 (21, [FcH$\left.]^{+}\right), 184$ (6), $168\left(16,\left[\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}\right), 167$ (10), 141 (9), 129 (8), $121\left(31,\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}\right), 115(7), 97$ (5), 95 (7), 85 (5), 83 (5), 81 (7), 77 (15, Ph^{+}), 73 (9), 71 (7), 70 (30), 69 (8), 65 (4), 60 (9), 57 (12), 56 (34, Fe ${ }^{+}$). IR (Nujol): 1620 (s), 1585 (s), 1466 (vs), 1252 (m), 1169 (m), 1103 (m), 1005 (m), 820 (m), 766 (s), 695 (s), 513 (m), 496 (s), 485 (m). For NMR data see ref. ${ }^{12}$
$\mathrm{FcCH}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-2$ ($\mathbf{1 b}$). Starting from $\mathrm{FcCHO}(5.79 \mathrm{~g}, 27 \mathrm{mmol}$) and o-toluidine (2.89 ml , 27 mmol), the general procedure afforded $\mathbf{1 b}$ as an orange solid ($5.59 \mathrm{~g}, 68 \%$). M.p. $106-108{ }^{\circ} \mathrm{C}$ (ref. ${ }^{6 c} 122-126^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 4.23\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.47,4.80(2 \times$ apparent t, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$); 6.82-7.22 (m, $\left.4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $17.84(\mathrm{Me}), 68.96\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.27\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 71.07\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 80.75\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 117.96$, 124.87, 126.71, $130.14\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 130.89,152.18\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 160.44(\mathrm{CH}=\mathrm{N})$. El MS, m/z (relative abundance): 304 (22), $303\left(100, \mathrm{M}^{\bullet+}\right), 302(12), 301(22), 238\left(24,\left[\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{5}\right]^{+}\right), 237$ (17), 236 (7), 235 (8), 212 (5), 208 (7), 186 (31, [FcH$]^{\bullet}$), 184 (5), 182 (9, [M $\left.\left.-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}\right), 181$ (9), 180 (11), $165(6), 121\left(25,\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}\right), 92(13), 91\left(64,\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}\right), 65(15), 56$ (32, Fe$)$) IR (Nujol): 1626 (vs), 1591 (s), 1248 (m), 1218 (m), 1180 (m), 1111 (m), 1105 (s), 1040 (s), 967 (m), 824 (s), 806 (m), 754 (vs), 731 (s), 498 (s), 485 (s). For $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FeN}$ (302.4) calculated: 71.30% C, $5.66 \% \mathrm{H}, 4.62 \% \mathrm{~N}$; found: $71.50 \% \mathrm{C}, 5.83 \% \mathrm{H}, 4.42 \% \mathrm{~N}$.
$\mathrm{FcCH}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-3$ (1c). Starting from FcCHO ($1.99 \mathrm{~g}, 9.3 \mathrm{mmol}$) and m-toluidine (1.00 ml , $9.3 \mathrm{mmol})$, the procedure as above gave $\mathbf{1 c}$ as an orange solid ($2.26 \mathrm{~g}, 80 \%$). M.p. $54-56{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.38(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 4.23\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.46,4.78(2 \times$ apparent $\mathrm{t}, 2 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{4}$) ; 6.92-7.27 (m, $\left.4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 21.43 (Me), 69.00 $\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.24\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 71.19\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 80.50\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 117.55,121.39,125.94$, $128.91\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 138.86,152.85\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 161.02(\mathrm{CH}=\mathrm{N})$. El MS, m/z (relative abundance): 304 (19), 303 (100, M^{+}), 302 (12), 301 (10), 238 (26, [M - $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right]^{+}$), 237 (14), 236 (5), 214 (8), 212 (15), 186 (10, [FcH$\left.]^{\bullet \dagger}\right), 184$ (8), 182 (11), 180 (7), 152 (5), 152 (5), 129 (9), 121 (41, $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}$), 92 (7), $91\left(22,\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}\right), 65$ (13), 57 (7), 56 (31, Fe ${ }^{+}$). IR (Nujol): 1620 (vs), 1582 (vs), 1462 (vs), 1238 (m), 1152 (m), 1107 (m), 1043 (m), 1003 (m), 930 (m), 820 (s), 783 (s), 695 (s), 514 (m), 502 (s), 484 (s). For $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FeN}$ (302.4) calculated: $71.30 \% \mathrm{C}, 5.66 \% \mathrm{H}$, 4.62\% N; found: 70.91% C, $5.57 \% \mathrm{H}, 4.48 \% \mathrm{~N}$.
$\mathrm{FcCH}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ (1d). Starting from $\mathrm{FcCHO}(5.56 \mathrm{~g}, 26 \mathrm{mmol}$) and p-toluidine (2.81 g , 26.2 mmol), compound $1 \mathbf{1 d}$ was obtained as an orange solid ($7.16 \mathrm{~g}, 91 \%$). M.p. $87-89^{\circ} \mathrm{C}$ (ref. ${ }^{6 \mathrm{c}} 130-132{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.35(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 4.23\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.46,4.78(2 \times$ apparent t, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$); 7.06, $7.16\left(2 \times \mathrm{d}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 8.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) .{ }^{13} \mathrm{C} N M R\left(\mathrm{CDCl}_{3}\right)$: $20.96(\mathrm{Me}), 68.97\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.23\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 71.16\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 80.58\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 120.49$, $129.70\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 134.88,150.30\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 160.57(\mathrm{CH}=\mathrm{N})$. El MS, m/z (relative abun-
 236 (5), 212 (9), 211 (5), 210 (10), 186 (11, [FcH] ${ }^{+}$), 182 (10, [M $\left.\left.-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}\right), 181$ (9), 155 (5), 154 (5), 153 (6), 152 (5), 129 (7), $121\left(15,\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}\right), 92(6), 91\left(17,\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}\right), 83(5), 73$ (13), 71 (9), 69 (8), 65 (11), 60 (10), 57 (14), 56 (28, Fe†). IR (Nujol): 1618 (vs), 1591 (vs), 1509 (s), 1326 (m), 1250 (m), 1188 (m), 1106 (s), 1044 (s), 1024 (s), 1003 (s), 818 (vs), 635 (m), 527 (m), 519 (m), 513 (m), 487 (vs), 478 (vs). For $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FeN}$ (302.4) calculated: 71.30\% C, $5.66 \% \mathrm{H}, 4.62 \% \mathrm{~N}$; found: $71.42 \% \mathrm{C}, 5.69 \% \mathrm{H}, 4.57 \% \mathrm{~N}$.
$\mathrm{FcCH}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OMe}-4$ (1e). Using the general procedure, FcCHO ($5.24 \mathrm{~g}, 24.5 \mathrm{mmol}$) and p -anisidine ($3.02 \mathrm{~g}, 24.5 \mathrm{mmol}$) gave $\mathbf{1 e}$ as an orange solid ($7.40 \mathrm{~g}, 95 \%$). M.p. $105-107{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 3.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 4.23\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.45,4.78(2 \times$ apparent $\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) ; 6.87-7.17\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 55.48(\mathrm{OMe}), 68.85$ $\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.20\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 71.06\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 80.76\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 114.34,121.68\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$; 145.94, $157.61\left(\mathrm{C}_{\text {ipso }}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 159.58(\mathrm{CH}=\mathrm{N})$. El MS, m/z (relative abundance): 320 (23), 319 (100, $\mathrm{M}^{\bullet}+$), 318 (6), 317 (8), 304 (12, [$\mathrm{M}-\mathrm{Me}^{+}$), 254 (12, [$\left.\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{5}\right]^{+}$), 253 (8), 239 (7, [M -$\left.\mathrm{Me}-\mathrm{C}_{5} \mathrm{H}_{5}\right]^{++}$), 238 (6), 198 (5, [M $\left.\left.-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}\right), 186$ (12, [FcH$]^{\bullet+}$), 184 (5), 160 (7), 155 (6), 154 (7), 149 (6), 129 (9), 128 (5), 121 (30, [C $\mathrm{C}_{5} \mathrm{He}^{+}$), 97 (5), 85 (5), 83 (7), 81 (7), 77 (5), 73 (13), 71 (8), 70 (4), 69 (14), 60 (9), 57 (18), 56 (24, Fe ${ }^{+}$). IR (Nujol): 1618 (vs), 1593 (m),

1577 (m), 1505 (vs), 1464 (vs), 1441 (m), 1291 (m), 1244 (vs), 1187 (m), 1104 (m), 1030 (s), 833 (vs), 822 (s), 784 (m), 523 (m), 504 (m), 481 (m). For $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FeNO}$ (302.4) calculated: 67.72\% C, $5.38 \% \mathrm{H}, 4.39 \% \mathrm{~N}$; found: $67.77 \% \mathrm{C}, 5.43 \% \mathrm{H}, 4.36 \% \mathrm{~N}$.
$\mathrm{FcCH}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}-4$ (1f). Starting from $\mathrm{FcCHO}(2.00 \mathrm{~g}, 9.3 \mathrm{mmol})$ and p-fluoroaniline (0.86 ml , 9.1 mmol), the procedure as above afforded $\mathbf{l f}$ as an orange solid ($2.02 \mathrm{~g}, 71 \%$). M.p. $96-98^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 4.24\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.48,4.78\left(2 \times\right.$ apparent $\left.\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 7.02-7.13(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 69.03\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.27\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 71.33(\mathrm{CH}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 80.33\left(\mathrm{C}_{\text {ipso }}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 115.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FC}}=22, \mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 121.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{FC}}=8, \mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$; $149.00\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{FC}}=3, \mathrm{CN}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 160.80\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=243, \mathrm{CF}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 161.3(\mathrm{CH}=\mathrm{N})$. El MS, m/z (relative abundance): 308 (22), 307 (100, $\mathrm{M}^{\bullet+}$), 306 (9), 305 (7), 242 (12, [M - $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right]^{\dagger}$), 241 (17), 240 (5), 216 (7), 214 (9), 187 (6), 186 (57, [M $\left.-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}$and [FcH$]^{+}$), 185 (9), 184 (16), 166 (6), 149 (8), 141 (7), 140 (11), 139 (17), 129 (13), 128 (6), 122 (5), 121 (47, $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}$), 119 (5), 115 (7), 111 (6), 109 (5), 97 (12), 95 (13), 85 (8), 83 (11), 82 (5), 81 (11), 81 (5), 77 (5), 75 (5), 73 (15), 71 (16), 70 (7), 69 (18), 67 (7), 65 (12), 60 (13), 57 (22), 56 (49, Fe^{+}). IR (Nujol): 1622 (vs), 1502 (s), 1209 (s), 1186 (s), 1104 (m), 1090 (m), 1047 (m), 833 (s), 820 (m), 808 (m), 791 (s), 536 (m), 500 (s), 479 (s). For $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{FFeN}$ (306.4) calculated: $66.47 \% \mathrm{C}, 4.60 \% \mathrm{H}, 4.56 \% \mathrm{~N}$; found: $66.32 \% \mathrm{C}, 4.59 \% \mathrm{H}, 4.40 \% \mathrm{~N}$.
$\mathrm{FcCH}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Cl}-4$ ($\mathbf{1 g}$). Starting from $\mathrm{FcCHO}(6.49 \mathrm{~g}, 30.3 \mathrm{mmol})$ and p-chloroaniline $(3.82 \mathrm{~g}, 30 \mathrm{mmol})$, the general procedure gave $\mathbf{1 g}$ as an orange solid ($7.98 \mathrm{~g}, 81 \%$). M.p. $98-100{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 4.24\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.50,4.78\left(2 \times\right.$ apparent $\left.\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$; 7.04-7.34 (m, $\left.4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) .{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right): 69.11\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.31$ $\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 71.48\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 80.11\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 121.91,129.16\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 130.60$, $151.36\left(\mathrm{C}_{\text {ipso }}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 161.85(\mathrm{CH}=\mathrm{N})$. El MS, m/z (relative abundance): 325 (19), 324 (13), $323\left(57, M^{+}\right), 258\left(11,\left[M-\mathrm{C}_{5} \mathrm{H}_{5}\right]^{+}\right), 257$ (7), 232 (6), 214 (19), $202\left(4,\left[\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{\dagger}\right), 187$ (7), 186 (55, [FcH$\left.]^{\bullet+}\right), 184$ (9), 167 (13), 166 (11), 140 (6), 139 (11), 129 (6), 121 (38, [$\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{\dagger}$), 115 (5), 94 (5), 93 (6), 92 (49), 91 (100), 81 (6), 69 (8), 65 (14), 63 (8), 60 (5), 57 (10), 56 (32, Fe^{+}). IR (Nujol): 1617 (vs), 1579 (m), 1491 (m), 1464 (vs), 1252 (m), 1213 (m), 1172 (m), 1107 (m), 1008 (m), 841 (m), 830 (s), 822 (s), 522 (m), 515 (m), 501 (s), 480 (m), 437 (m). For $\mathrm{C}_{17} \mathrm{H}_{14}$ CIFeN (322.8) calculated: $63.09 \% \mathrm{C}, 4.37 \% \mathrm{H}, 4.33 \% \mathrm{~N}$; found: $63.37 \% \mathrm{C}$, 4.62\% H, 4.19\% N.
$\mathrm{FcCH}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Br}-4$ ($\mathbf{1 h}$). Starting from $\mathrm{FcCHO}(2.00 \mathrm{~g}, 9.3 \mathrm{mmol}$) and p-bromoaniline $(1.31 \mathrm{~g}, 7.6 \mathrm{mmol})$, the general procedure gave $\mathbf{1 h}$ as an orange solid ($1.95 \mathrm{~g}, 57 \%$). M.p. $113-115{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 4.24\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.50,4.78\left(2 \times\right.$ apparent $\left.\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$; 6.98-7.49 (m, $\left.4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) .{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right): 69.13\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.32$ $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 71.50\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 80.11\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 118.39\left(\mathrm{CBr}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 122.33,132.11(\mathrm{CH}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 151.86\left(\mathrm{C}_{\text {ipso }}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 161.88(\mathrm{CH}=\mathrm{N})$. El $\mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative abundance): $367\left(4, \mathrm{M}^{\bullet}{ }^{+}\right)$, 214 (27), 186 (19, $\left.[\mathrm{FcH}]^{+}\right), 184$ (5), 149 (5), 129 (9), $121\left(28,\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}\right), 115$ (5), 97 (8), 95 (6), 92 (22), 91 (47), 85 (10), 83 (12), 82 (5), 81 (14), 77 (5), 73 (17), 71 (14), 70 (7), 69 (21), 67 (6), 65 (10), 61 (5), 60 (18), 57 (31), 56 (37, Fe ${ }^{+}$). IR (Nujol): 1691 (m), 1616 (vs), 1577 (s), 1490 (s), 1464 (vs), 1412 (m), 1251 (m), 1212 (s), 1172 (s), 1107 (s), 1072 (s), 1044 (m), 1024 (m), 1005 (s), 846 (m), 821 (vs), 634 (m), 514 (s), 498 (s), 480 (s). For $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrFeN}$ (367.3) calculated: 55.47% C, $3.84 \% \mathrm{H}, 3.81 \%$ N; found: $56.07 \% \mathrm{C}, 3.93 \% \mathrm{H}, 3.36 \% \mathrm{~N}$.

Synthesis of Amines 2a-2h. General Procedure
Solid NaBH_{4} (4 molar equiv.) was slowly added into an ice-cooled solution of Schiff bases la-1h in dry MeOH (25 ml) with stirring (in air). After stirring for 1 h , aqueous 1 m NaOH solution (30 ml) was added and the product was extracted into chloroform ($3 \times 50 \mathrm{ml}$). Drying of the combined organic phase $\left(\mathrm{MgSO}_{4}\right)$ followed by evaporation under vacuum afforded pure amines 2a-2h.

FcCH 2 NHPh (2a). Starting from 1a ($1.74 \mathrm{~g}, 6 \mathrm{mmol}$) and $\mathrm{NaBH}_{4}(0.91 \mathrm{~g}, 24 \mathrm{mmol}$), the general procedure gave $\mathbf{2 a}$ as a yellow solid ($1.28 \mathrm{~g}, 73 \%$). El MS, m/z (relative abundance): 292 (9), 291 (45, $\mathrm{M}^{\bullet+}$), 213 (7, [M - PhH $]^{\bullet+}$), 200 (18), 199 (100, [$\left.\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{+}$), 198 (4), 197 (8), 186 (11, [FcH$\left.]^{\bullet+}\right), 122(5), 121\left(52,\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}\right), 93\left(24,\left[\mathrm{PhNH}_{2}\right]^{++}\right), 92$ (14), 91 (17), 85 (20), 83 (26), 77 (7), 69 (9), 66 (7), 65 (7), 57 (5), 56 (27, Fe^{+}). HR MS: for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FeN}$ calculated 291.0710, found 291.0690. IR (Nujol): 3401 (s), 1604 (s), 1505 (s), 1428 (s), 1331 (m), 1317 (s), 1255 (m), 1180 (m), 1105 (s), 999 (m), 866 (m), 826 (m), 808 (m), 748 (s), 693 (s), 491 (s). For other characterization data see ref. ${ }^{12}$
$\mathrm{FcCH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{Me}-2(\mathbf{2 b})$. Starting from $\mathbf{1 b}(0.91 \mathrm{~g}, 3 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(0.46 \mathrm{~g}, 12.2$ mmol), the general procedure gave $\mathbf{2 b}$ as a yellow solid ($0.83 \mathrm{~g}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $2.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.97\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.17$ (apparent t, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $4.20(\mathrm{~s}$, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), 4.28 (apparent $\left.\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.65-7.19\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C} N M R\left(\mathrm{CDCl}_{3}\right): 17.57$ $(\mathrm{Me}), 42.99\left(\mathrm{CH}_{2}\right), 67.87,67.93\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 68.48\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 86.70\left(\mathrm{C}_{\text {ipso }}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 109.71,117.02$ $\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 121.68\left(\mathrm{C}_{\text {ipso }}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 127.23,130.09\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 146.19\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{6} \mathrm{H}_{4}\right) . \mathrm{El} \mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative abundance): 306 (6), 305 (30, M•+), 200 (12), 199 (100, [$\left.\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{+}$), 197 (6), 161 (4), 121 (37, $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}$), 106 (5), 91 (4), 69 (4), 56 (17, Fe^{+}). HR MS: for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FeN}$ calculated 305.0867, found 305.0874. IR (Nujol): 3416 (s), 1605 (s), 1582 (m), 1514 (s), 1503 (s), 1444 (m), 1314 (m), 1260 (m), 1133 (m), 1104 (s), 1025 (m), 1002 (m), 924 (m), 830 (m), 815 (m), 749 (s), 495 (m), 487 (m), 444 (m).
$\mathrm{FcCH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{Me} 3(\mathbf{2 c})$. Starting from $\mathbf{1 c}(1.57 \mathrm{~g}, 5.2 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(1.12 \mathrm{~g}, 30 \mathrm{mmol})$, the general procedure gave $\mathbf{2 c}$ as a yellow solid ($1.43 \mathrm{~g}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $2.30(\mathrm{~s}, 3 \mathrm{H}$, Me), 3.82 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 3.94 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 4.14 (apparent t, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 4.18 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), 4.24 (apparent $\left.\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.45-7.12\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}\right): 21.64(\mathrm{Me}), 43.36}$ $\left(\mathrm{CH}_{2}\right), 67.85,68.07\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 68.47\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 86.59\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 109.98,113.57,118.46$, $129.15\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 139.06,148.35\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{6} \mathrm{H}_{4}\right) . \mathrm{El} \mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative abundance): 306 (8), 305 (37, $\mathrm{M}^{\bullet+}$), 227 (6), 200 (15), 197 (6), 121 (39, [$\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}$), 107 (3), 106 (4), 91 (5), 83 (4), 69 (5), 57 (4), 56 (15, Fe^{+}). HR MS: for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FeN}$ calculated 305.0867, found 305.0885. IR (Nujol): 3410 (vs), 1603 (s), 1588 (m), 1509 (s), 1306 (s), 1256 (m), 1166 (m), 1104 (m), 992 (m), 926 (m), 817 (s), 775 (s), 693 (m), 505 (m), 487 (m).
$\mathrm{FcCH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{Me}-4(\mathbf{2 d})$. Starting from 1d ($1.82 \mathrm{~g}, 6 \mathrm{mmol}$) and $\mathrm{NaBH}_{4}(0.91 \mathrm{~g}, 24 \mathrm{mmol})$, the general procedure gave 2d as a yellow solid ($1.70 \mathrm{~g}, 93 \%$). ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right): 2.25(\mathrm{~s}, 3 \mathrm{H}$, Me), 3.73 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 3.93 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 4.12 (apparent t, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 4.16 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), 4.23 (apparent $\left.\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.56-7.03\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}\right): 20.41(\mathrm{Me}), 43.75}$ $\left(\mathrm{CH}_{2}\right), 67.82,68.07\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 68.45\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 86.69\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 113.03\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 126.72$ $\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 129.75\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 146.10\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{6} \mathrm{H}_{4}\right) . \mathrm{El} \mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative abundance): 306 (6), 305 (29, M^{+}), 227 (3), 200 (13), 197 (5), 186 (9, [FCH$]^{\bullet+}$), 121 ($42,\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}$), 106 (5), 91 (5), 69 (3), 56 (14, Fe^{+}). HR MS: for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FeN}$ calculated 305.0867, found 305.0854. IR (Nujol): 3395 (s), 1611 (s), 1521 (vs), 1404 (m), 1317 (s), 1304 (m), 1252 (s), 1185 (m), 1125 (m), 1104 (s), 1034 (m), 820 (m), 811 (m), 522 (m), 511 (s), 499 (m), 483 (s).
$\mathrm{FCCH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{OMe}-4$ (2e). Starting from $\mathbf{1 e}(1.92 \mathrm{~g}, 6 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(0.91 \mathrm{~g}, 24 \mathrm{mmol})$, the general procedure gave $\mathbf{2 e}$ as a yellow solid ($1.60 \mathrm{~g}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $3.52(\mathrm{~s}, 1 \mathrm{H}$, NH), 3.74 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.91 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 4.12 (apparent t, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 4.16 (s, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), 4.22 (apparent $\left.\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.59-6.82\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 44.41\left(\mathrm{CH}_{2}\right)$, $55.80(\mathrm{OMe}), 67.81,68.07\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 68.44\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 86.66\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 114.19,114.91$ $\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 142.61,152.22\left(\mathrm{C}_{\text {ipso }}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$. El MS, m/z (relative abundance): 322 (4), 321 (21, $M^{\bullet+}$), 319 (5), 228 (4), 214 (5), 200 (14), 199 (100, [$\left.\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{+}$), 197 (6), 123 (34, $\left[\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}\right]^{\bullet}+121\left(48,\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}\right), 108$ (47), 80 (22), 65 (5), 57 (5), 56 (17, Fe ${ }^{+}$). HR MS: for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FeNO}$ calculated 321.0816, found 321.0747. IR (Nujol): 3367 (s), 1512 (s), 1408 (m), 1298 (m), 1248 (m), 1233 (s), 1180 (m), 1105 (m), 1037 (m), 1002 (m), 814 (s), 773 (m), 504 (m), 486 (m), 447 (m).
$\mathrm{FcCH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{~F}-4(\mathbf{2 f})$. Starting from $\mathbf{1 f}(1.73 \mathrm{~g}, 5.63 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(0.89 \mathrm{~g}, 24 \mathrm{mmol})$, the general procedure gave $\mathbf{2 f}$ as a yellow solid ($1.63 \mathrm{~g}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): 3.75 (s, 1 H , NH), $3.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.14$ (apparent $\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $4.18\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.23$ (apparent $\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 6.55-6.94\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 44.13\left(\mathrm{CH}_{2}\right), 67.94,68.11\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $68.50\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 86.29\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 113.65\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{FC}}=8, \mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 115.68\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FC}}=22\right.$, $\left.\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 144.69\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{FC}}=2, \mathrm{CN}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 155.90\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FC}}=235, \mathrm{CF}, \mathrm{C}_{6} \mathrm{H}_{4}\right) . \mathrm{El} \mathrm{MS}, \mathrm{m} / \mathrm{z}($ relative abundance): 310 (6), 309 (31, $\mathrm{M}^{\bullet+}$), 200 (13), 199 (100, [$\left.\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{\dagger}$), 197 (6), 186 (3, [FcH$]^{\bullet}+$), $122(4), 121\left(41,\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}\right), 69(6), 57(4), 56$ (19, Fe^{+}). HR MS: for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{FFeN}$ calculated 309.0616, found 309.0575. IR (Nujol): 3409 (s), 1604 (m), 1507 (s), 1402 (m), 1314 (m), 1250 (m), 1210 (s), 1154 (m), 1102 (s), 1036 (m), 824 (s), 788 (m), 514 (s), 499 (m), 482 (s).
$\mathrm{FcCH}_{2} \mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{Cl}-4(\mathbf{2 g})$. Starting from $\mathbf{1 g}(1.94 \mathrm{~g}, 6 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(0.91 \mathrm{~g}, 24 \mathrm{mmol})$, the above procedure afforded $\mathbf{2 g}$ as a yellow solid ($1.84 \mathrm{~g}, 99 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 3.88$ (s, $1 \mathrm{H}, \mathrm{NH}$), 3.92 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 4.15 (apparent t, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 4.17 (s, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), 4.22 (apparent $\left.\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.54-7.16\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 43.51\left(\mathrm{CH}_{2}\right), 67.99,68.11$ $\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 68.51\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 86.00\left(\mathrm{C}_{\text {ipso }}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 113.85\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 122.00\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, $129.08\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 146.79\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{6} \mathrm{H}_{4}\right) . \mathrm{El} \mathrm{MS}, \mathrm{m} / \mathrm{z}$ (relative abundance): 327 (7), 326 (5), 325 (24, M**), 216 (5), 200 (17), 199 (100, [C $\left.{ }_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{+}$), 197 (7), 187 (5), 186 (40, [FcH$]^{\bullet+}$), 138 (10), 129 (18), 128 (5), 127 (54), 122 (5), 121 (64, [$\left.\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}\right), 100$ (6), 99 (5), 95 (5), 92 (14), 91 (7), 85 (23), 83 (5), 83 (45), 81 (8), 71 (6), 69 (16), 65 (25), 64 (5), 63 (7), 57 (12), 56 (40, Fe ${ }^{+}$). HR MS: for $\mathrm{C}_{17} \mathrm{H}_{16}{ }^{35} \mathrm{CIFeN}$ calculated 325.0321, found 325.0292. IR (Nujol): 3421 (s), 1595 (s), 1499 (s), 1400 (s), 1320 (s), 1248 (m), 1185 (m), 1174 (m), 1119 (m), 1103 (s), 1035 (m), 998 (m), 821 (s), 636 (m), 507 (s), 487 (s), 435 (m).

FcCH $\mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{Br}-4$ (2h). Following the general procedure, $\mathbf{1 h}(1.84 \mathrm{ml}, 5 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(1.37 \mathrm{~g}, 36 \mathrm{mmol})$ yielded $\mathbf{2 h}$ as a yellow solid ($1.86 \mathrm{~g}, 99 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 3.90$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $3.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.15$ (apparent t, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $4.17\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right.$), 4.22 (apparent t, $\left.2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.50-7.29\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 43.41\left(\mathrm{CH}_{2}\right), 68.01$, 68.11 $\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 68.52\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 85.95\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 109.01\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 114.34,131.96(\mathrm{CH}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 147.19\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$. El MS, m/z (relative abundance): 371 (16, $\mathrm{M}^{\bullet+}$), 370 (4), 369 (17), 200 (16), 199 (100, [C $\left.\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{\dagger}$), 197 (7), 173 (19), 171 (21), 168 (4), 167 (4), 121 (36, $\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}$), 92 (13), 91 (4), 65 (17), 63 (6), 56 (13, Fe ${ }^{+}$). HR MS: for $\mathrm{C}_{17} \mathrm{H}_{16}{ }^{71} \mathrm{BrFeN}$ calculated 370.9795, found 370.9814. IR (Nujol): 3407 (s), 1592 (s), 1498 (s), 1312 (s), 1176 (m), 1104 (s), 1070 (m), 998 (s), 832 (m), 808 (s), 508 (m), 495 (s), 485 (s).

Synthesis of (Hydroxymethyl)oxazolines 3

A solution of glycolic acid and the respective β-aminoalcohol (1 equiv.) in dry xylene was refluxed under Dean-Stark trap for 15 h . After cooling to room temperature, the solvent was removed under reduced pressure and the residue distilled under vacuum. The oxazolines were characterized by NMR spectroscopy and directly used in the next step.

Compound 3a: Yield 12.82 g (50\%) at 198 mmol scale; colourless crystalline solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.30(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 4.01$ and $4.22\left(2 \times \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.63(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl ${ }_{3}$): $28.24(\mathrm{Me}), 56.98\left(\mathrm{CH}_{2}\right), 66.69\left(\mathrm{CMe}_{2}\right), 79.82\left(\mathrm{CH}_{2}\right), 166.84(\mathrm{C}=\mathrm{N})$.

Compound 3b: Yield $6.28 \mathrm{~g}(48 \%)$ at 92 mmol scale; colourless crystalline solid. $[\alpha]_{0}^{22}-98$ (c $0.51, \mathrm{EtOH}),[\alpha]_{D}^{22}-60.5\left(\mathrm{c} 0.99, \mathrm{CHCl}_{3}\right)$. Characterization data were consistent with the literature data ${ }^{15}\left([\alpha]_{D}-48.5\right.$ (c 2.0, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$).

Conversion of (Hydroxymethyl)oxazolines $\mathbf{3}$ to (Chloromethyl)oxazolines $\mathbf{4}$

Triphenylphosphine ($25.2 \mathrm{~g}, 96 \mathrm{mmol}$) was added to a solution of oxazoline 3 a (93 mmol) in $\mathrm{CCl}_{4}(90 \mathrm{ml})$, and the mixture was refluxed under argon for 19 h . After cooling to room temperature, the volatiles were removed under reduced pressure and the semisolid residue was extracted with hexane ($5 \times 100 \mathrm{ml}$). The extracts were combined, hexane was evaporated and the residue distilled under vacuum (at ca 65 Pa) to give oxazoline 4a. Oxazoline 4b was obtained similarly from $3 \mathrm{a}\left(20.0 \mathrm{~g}, 140 \mathrm{mmol}\right.$), $\mathrm{PPh}_{3}(37.9 \mathrm{~g}, 145 \mathrm{mmol})$ and CCl_{4} (150 ml).

Compound 4a: Yield 9.31 g (54\%), colourless liquid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: 1.31 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{Me}$), 4.05 and $4.09\left(2 \times \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$. Analytical data correspond to those published in ref. ${ }^{16}$

Compound 4b: Yield $14.6 \mathrm{~g}(65 \%)$, colourless liquid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8\right.$, $3 \mathrm{H}, \mathrm{CHMe}), 0.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8,3 \mathrm{H}, \mathrm{CHMe}\right), 1.70-1.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}_{2}\right), 3.93-4.02(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}^{\mathrm{Ox}}$), 4.04-4.39 (m, $2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{ox}}$), $4.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right) .[\alpha]_{D}^{22}-79.6$ (c 1.1, CHCl_{3}).

Alkylation of Ferroceneamines $\mathbf{2}$ with Chlorooxazolines 4. General Procedure
Oxazolines 5 and 6 were synthesized by heating a stirred mixture of amine $\mathbf{1}$ (1 mmol), oxazoline $4(2 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{mmo})$ to $80-90^{\circ} \mathrm{C}$ (temperature in bath) under an argon atmosphere for 48 h . Then, the dark mixture was cooled to room temperature and extracted into chloroform ($3 \times 5 \mathrm{ml}$). The combined extracts were evaporated and the residue was purified by chromatography on silica gel using chloroform as the eluent. The second orange band was collected, evaporated and the residue chromatographed once again on silica gel column with ethyl acetate-hexane ($1: 1, \mathrm{v} / \mathrm{v}$). Evaporation and drying in vacuum ($65 \mathrm{~Pa}, 60^{\circ} \mathrm{C}, 1 \mathrm{~h}$) afforded oxazolines $\mathbf{5}$, and $\mathbf{6 a}, \mathbf{6 c}, \mathbf{6 d}, \mathbf{6 f}-\mathbf{6 h}$, respectively, as dark orange oils in the yields not exceeding 30%. In other cases ($\mathbf{6 b}, \mathbf{6 e}$), intractable dark mixtures were obtained from which no defined product could be isolated.
$\mathrm{FcCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{Me}_{2} \mathrm{Ox}\right) \mathrm{Ph}(5) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 1.26(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 3.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.04(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}$) , 4.10 (apparent $\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $4.16\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right.$), 4.22 (apparent t, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 4.37 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 6.70-7.24 (m, $\left.5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 28.31(\mathrm{Me}), 46.85,50.47$ $\left(\mathrm{CH}_{2}\right) ; 67.14\left(\mathrm{CMe}_{2}{ }^{\mathrm{Ox}}\right), 67.96\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 68.61\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 69.21\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 79.25\left(\mathrm{CH}_{2}{ }^{\mathrm{Ox}}\right)$, $83.94\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 113.42,117.46,129.01\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 148.57\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 163.45\left(\mathrm{C}_{\mathrm{ipso}} \mathrm{Ox}\right)$. El MS, m/z (relative abundance): 402 (12, $\mathrm{M}^{\bullet+}$), 337 (6, [$\left.\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{5}\right]^{+}$), 291 (6), 290 (37), 289 (100, [1a] ${ }^{+}$), 287 (7), 224 (5), 204 (18), 200 (8), 199 (52, [$\left.\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{+}$), 187 (9), 132 (9), 121
(31, [C $\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{\dagger}$), 106 (20), 105 (11), 104 (10), 77 (12), 56 (11, Fe^{\dagger}). HR MS: for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{FeN}_{2} \mathrm{O}$ calculated 402.1395, found 402.1385.
$(\mathrm{S})-\mathrm{FCCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{i}-\mathrm{PrOx}\right) \mathrm{Ph}(6 \mathbf{a}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 0.86,0.93\left(2 \times \mathrm{d},{ }^{3}\right)_{\mathrm{HH}}=6.8,3 \mathrm{H}$, CHMe2) ; 1.70-1.82 (m, $1 \mathrm{H}, \mathrm{CHMe}_{2}$), 3.89-3.98 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{Ox}}$ and $\mathrm{CH}^{\mathrm{Ox}}$), 4.08 (bs, 2 H , $\mathrm{CH}_{2} \mathrm{Ox}$), 4.10 (apparent t, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 4.16 (s, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), 4.16-4.24 (m, $3 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$ and $\left.\mathrm{CH}_{2}{ }^{\mathrm{OX}}\right), 4.35,4.39\left(2 \times \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=15.4,1 \mathrm{H}, \mathrm{AB}\right.$ system of $\left.\mathrm{FCCH} \mathrm{H}_{2}\right) ; 6.69-7.24\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 17.98,18.76\left(\mathrm{CHMe}_{2}\right) ; 32.34\left(\mathrm{CHMe}_{2}\right), 46.53\left(\mathrm{CH}_{2} \mathrm{Ox}\right), 50.39\left(\mathrm{FCCH}_{2}\right)$, $67.94\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 68.62\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 69.13\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.03\left(\mathrm{CH}_{2}{ }^{\mathrm{Ox}}\right), 71.96\left(\mathrm{CH}^{\mathrm{Ox}}\right), 84.00$ $\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 113.41,117.44,129.02\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 148.54\left(\mathrm{C}_{\text {ipso }}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 164.81\left(\mathrm{C}_{\text {ipso }}{ }^{\mathrm{O} \times x}\right)$. El MS, m / z (relative abundance): $416\left(10, \mathrm{M}^{\bullet}\right), 351\left(5,\left[\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{5}\right]^{\dagger}\right), 291$ (9), 290 (37), 289 (100, [1a] ${ }^{+}$), $287(6), 200(7), 199\left(46,\left[\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{+}\right), 187(10), 121\left(29,\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{\dagger}\right), 104(5), 77(6)$, 56 (10, Fe^{+}). HR MS: for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FeN}_{2} \mathrm{O}$ calculated 416.1551, found 416.1552.
$(\mathrm{S})-\mathrm{FCCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{i}-\mathrm{PrOx}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me} 3\right)(6 \mathrm{c}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 0.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8,3 \mathrm{H}, \mathrm{CHMe}_{2}\right)$, $0.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.7,3 \mathrm{H}, \mathrm{CHMe}_{2}\right), 1.70-1.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe} 2), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$, 3.89-3.97 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{Ox}}$ and $\mathrm{CH}^{\mathrm{Ox}}$), 4.05, $4.08\left(2 \times \mathrm{br} \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=16.8,1 \mathrm{H}, \mathrm{AB}\right.$ system of $\mathrm{CH}_{2} \mathrm{Ox}$); 4.10 (apparent $\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $4.16\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.17-4.26\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right.$ and $\left.\mathrm{CH}_{2}{ }^{\mathrm{Ox}}\right), 4.34,4.37\left(2 \times \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=15.4,1 \mathrm{H}, \mathrm{AB}\right.$ system of $\left.\mathrm{FCCH}_{2}\right) ; 6.50-7.13\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 17.98,18.74\left(\mathrm{CHMe}_{2}\right) ; 21.90\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 32.32\left(\mathrm{CHMe}_{2}\right), 46.54\left(\mathrm{CH}_{2} \mathrm{Ox}\right)$, $50.40\left(\mathrm{FcCH}_{2}\right), 67.90\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 68.61\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 69.13\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.00\left(\mathrm{CH}_{2}{ }^{\mathrm{Ox}}\right), 71.93$ $\left(\mathrm{CH}^{0 \times}\right), 84.17\left(\mathrm{C}_{\text {ipso }} \mathrm{C}_{5} \mathrm{H}_{4}\right), 110.60,114.12,118.38,128.87\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 138.66\left(\mathrm{CMe}^{+} \mathrm{C}_{6} \mathrm{H}_{4}\right)$, $148.61\left(\mathrm{CN}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 164.94\left(\mathrm{C}_{\text {ipso }}{ }^{\mathrm{OX}}\right.$). EI MS, m/z (relative abundance): $430\left(9, \mathrm{M}^{\bullet}{ }^{+}\right), 365(5$, $\left.\left[\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{5}\right]^{\dagger}\right), 306(4), 305(21), 304(39), 303$ (100, [1c] ${ }^{+}$), 301 (7), 238 (6), 232 (5), 201 (10), 200 (14), 199 ($80,\left[\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{+}$), 196 (5), $121\left(38,\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}\right), 120$ (9), 119 (6), 118 (7), 107 (4), 91 (12), 84 (4), 81 (6), 69 (14), 65 (4), 57 (6), 56 (14, Fe^{+}). HR MS: for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{FeN}_{2} \mathrm{O}$ calculated 431.1712, found 431.1707.
(S) $-\mathrm{FCCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{i}-\mathrm{PrOx}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathbf{6 d}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 0.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8,3 \mathrm{H}\right.$, CHMe), $0.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.7,3 \mathrm{H}, \mathrm{CHMe}_{2}\right.$), 1.71-7.81 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHMe} \mathrm{C}_{2}$), $2.23(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$), 3.87-3.96 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{Ox}}$ and $\mathrm{CH}^{\mathrm{Ox}}$), 4.04 (bs with weak AB satellites, 2 H , $\mathrm{CH}_{2} \mathrm{Ox}$), 4.08 (apparent t, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $4.15\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.13-4.22\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right.$ and $\left.\mathrm{CH}_{2}{ }^{\mathrm{Ox}}\right), 4.31,4.35\left(2 \times \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=15.3,1 \mathrm{H}, \mathrm{AB}\right.$ system of $\left.\mathrm{FCCH}_{2}\right) ; 6.72-7.04\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 18.02,18.78\left(\mathrm{CHMe}_{2}\right) ; 20.28\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 32.37\left(\mathrm{CHMe}_{2}\right), 46.78\left(\mathrm{CH}_{2} \mathrm{Ox}\right)$, $50.75\left(\mathrm{FcCH}_{2}\right), 67.89\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 68.58\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 69.18\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.01\left(\mathrm{CH}_{2}{ }^{\mathrm{Ox}}\right), 71.95$ $\left(\mathrm{CH}^{\mathrm{Ox}}\right), 84.05\left(\mathrm{C}_{\text {ipso }}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 113.89\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 126.77\left(\mathrm{CMe}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 129.53\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 146.47 (CN, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 165.00\left(\mathrm{C}_{\text {ipso }}{ }^{\mathrm{Ox}}\right)$. El MS, m/z (relative abundance): $430\left(9, \mathrm{M}^{\bullet}{ }^{+}\right), 365(4$, $\left.\left[\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{5}\right]^{+}\right), 305(12), 304(38), 303\left(100,[1 d]^{+}\right), 301(7), 300(5), 299(24), 268(8), 238$ (4), 233 (5), 232 (33), 231 (4), 201 (9), 200 (15), 199 (87, [$\left.\left.\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{\dagger}\right), 197$ (6), 186 (9), 159 (8), 146 (4), 139 (4), 127 (5), 122 (4), 121 (49, [C $\left.\left.\mathrm{C}_{5} \mathrm{Fe}\right]^{+}\right), 120$ (36), 119 (30), 118 (14), 114 (11), 107 (4), 106 (7), 91 (18), 84 (6), 77 (6), 72 (13), 70 (7), 69 (11), 66 (4), 65 (8), 60 (10), 57 (7), 56 (23, Fe^{+}). HR MS: for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{FeN}_{2} \mathrm{O}$ calculated 431.1712, found 431.1728.
(S) $-\mathrm{FcCH} \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{i}-\mathrm{PrOx}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-4\right)(6 f) .{ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right): 0.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8,3 \mathrm{H}, \mathrm{CHMe}_{2}\right)$, $0.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8,3 \mathrm{H}, \mathrm{CHMe}\right.$), 1.70-1.80 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHMe} \mathrm{C}_{2}$), $3.88-3.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{Ox}}\right.$ and $\mathrm{CH}^{\mathrm{Ox}}$), 3.99, $4.02\left(2 \times \mathrm{b} \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=16.8,1 \mathrm{H}, \mathrm{AB}\right.$ system of $\mathrm{CH}_{2} \mathrm{Ox}$); 4.10 (apparent $\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 4.14\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.15-4.23\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{Ox}}\right.$ and $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 4.29,4.33\left(2 \times \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=\right.$ 15.1, $1 \mathrm{H}, \mathrm{AB}$ system of $\left.\mathrm{FCCH}_{2}\right) ; 6.75-6.94\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 17.97,18.71$ (CHMe $)$) $32.33\left(\mathbf{C H M e}_{2}\right), 47.10\left(\mathrm{CH}_{2} \mathrm{Ox}\right), 51.41\left(\mathrm{FcCH}_{2}\right), 68.01\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 68.61(\mathrm{CH}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 69.20\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.01\left(\mathrm{CH}_{2}{ }^{\mathrm{Ox}}\right), 71.95\left(\mathrm{CH}^{\mathrm{Ox}}\right), 83.51\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 115.25\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FC}}=\right.$ 11.0, $\left.\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 115.40\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{FC}}=4.0, \mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 145.19\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{FC}}=1.8, \mathrm{CN}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 156.02$
$\left(d^{1} J_{\mathrm{FC}}=237, \mathrm{CF}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 163.61\left(\mathrm{C}_{\mathrm{ipso}}{ }^{\mathrm{Ox}}\right)$. El MS, m/z (relative abundance): $434\left(10, \mathrm{M}^{\bullet+}\right)$, 369 (5, [M - $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right]^{\dagger}$), 309 (6), 308 (34), 307 (100), 305 (6), 242 (3), 205 (7), 200 (8), 199 (52, $\left[\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{+}$), 197 (3), 186 (3), 127 (5), 122 (4), 121 (31, [C $\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{+}$), 114 (3), 95 (3), 84 (5), 56 (9, Fe^{+}). HR MS: for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{FFeN}_{2} \mathrm{O}$ calculated 434.1457, found 434.1454.
(S) $-\mathrm{FcCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{i}-\mathrm{PrOx}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}-4\right)(6 g) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 0.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.7,3 \mathrm{H}, \mathrm{CHMe}_{2}\right)$, $0.93\left(\mathrm{~d}^{3}{ }^{3} \mathrm{JH}_{\mathrm{HH}}=6.8,3 \mathrm{H}, \mathrm{CHMe}_{2}\right), 1.70-1.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe}_{2}\right), 3.90-3.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{Ox}}\right.$ and $\mathrm{CH}^{\mathrm{Ox}}$), 4.05 (bs, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ox}$), 4.11 (apparent t, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $4.16\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.15-4.23$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{Ox}}\right.$ and $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 4.32,4.35\left(2 \times \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=15.2,1 \mathrm{H}, \mathrm{AB}\right.$ system of $\left.\mathrm{FCCH}_{2}\right)$; 6.72-7.17 (m, $\left.4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 17.98,18.74\left(\mathrm{CHMe}_{2}\right) ; 32.33\left(\mathrm{CHMe}_{2}\right), 46.67$ $\left(\mathrm{CH}_{2} \mathrm{Ox}\right), 50.68\left(\mathrm{CH}_{2} \mathrm{Fc}\right), 68.06\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 68.66\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 69.05\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.10\left(\mathrm{CH}_{2}{ }^{\mathrm{Ox}}\right)$, $71.97\left(\mathrm{CH}_{2}{ }^{\mathrm{Ox}}\right), 83.56\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 114.59\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 122.25\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 128.90(\mathrm{CH}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 147.10\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 164.36\left(\mathrm{C}_{\mathrm{ipso}} \mathrm{Ox}\right)$. El MS, m/z (relative abundance): $450\left(6, \mathrm{M}^{\bullet+}\right)$, 326 (8), 325 (28), 324 (21), 323 (59, [1g] ${ }^{\bullet+}$), 321 (4), 300 (4), 299 (20), 283 (6), 268 (7), 254 (19), 253 (10), 252 (53), 251 (6), 214 (7), 209 (7), 200 (17), 199 (100, [$\left.\left.\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{\dagger}\right), 197$ (13), 197 (7), 186 (12), 185 (5), 181 (8), 179 (20), 166 (8), 142 (21), 141 (18), 140 (68), 139 (36), 138 (15), 129 (4), 127 (17), 127 (12), 122 (5), 121 (51, [$\left.\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{\dagger}\right), 114$ (29), 113 (5), 111 (12), 105 (5), 84 (14), 78 (5), 77 (11), 75 (8), 72 (15), 70 (15), 69 (20), 66 (6), 65 (6), 60 (9), 57 (6), 56 (28, Fe ${ }^{+}$). HR MS: for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{ClFeN}_{2} \mathrm{O}$ calculated 450.1161, found 450.1149.
(S) $-\mathrm{FcCH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{i}-\mathrm{PrOx}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}-4\right)(\mathbf{6 h}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 0.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8,3 \mathrm{H}, \mathrm{CHMe} \mathbf{M e}_{2}\right)$, $0.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8,3 \mathrm{H}, \mathrm{CHMe}_{2}\right), 1.70-1.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe} \mathrm{C}_{2}\right), 3.90-9.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}^{\mathrm{Ox}}\right.$ and $\mathrm{CH}_{2}{ }^{\mathrm{Ox}}$), 4.04 (bs, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ox}$), 4.10 (apparent $\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $4.15\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right.$), 4.15-4.23 $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ox}\right.$ and $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 4.31,4.34\left(2 \times \mathrm{d}^{2}{ }^{2} \mathrm{~J}_{\mathrm{HH}}=15.4,1 \mathrm{H}, \mathrm{AB}\right.$ system of $\left.\mathrm{FcCH}_{2}\right) ; 4.32(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{FcCH}_{2}\right), 6.67-7.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 17.99,18.75\left(\mathrm{CHMe}_{2}\right) ; 32.35\left(\mathrm{CHMe}_{2}\right)$, $46.61\left(\mathrm{CH}_{2} \mathrm{Ox}\right), 50.60\left(\mathrm{FcCH}_{2}\right), 68.07\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 68.67\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 69.02\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.11$ $\left(\mathrm{CH}_{2}{ }^{\mathrm{Ox}}\right), 72.00\left(\mathrm{CH}^{\mathrm{Ox}}\right), 83.55\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 109.38\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 115.00\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 131.69$ $\left(\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 147.50\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 164.30\left(\mathrm{C}_{\mathrm{ipso}}{ }^{\mathrm{Ox}}\right)$. El MS, m/z (relative abundance): 496 (6, $\mathrm{M}^{\bullet+}$), 494 (6), 371 (7), 370 (22), 369 (69, [1h] ${ }^{\bullet+}$), 368 (23), 367 (67), 365 (4), 300 (9), 299 (46), 298 (4), 297 (4), 290 (7), 289 (21), 269 (4), 268 (16), 256 (5), 226 (4), 213 (7), 200 (16), 199 (100, [$\left.\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{+}$), 197 (6), 197 (7), 187 (6), 186 (18), 185 (5), 184 (6), 148 (4), 129 (4), 127 (11), 122 (6), 121 (68, [$\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Fe}\right]^{\dagger}$), 119 (4), 114 (12), 84 (9), 78 (4), 77 (7), 69 (8), 56 (28, Fe'). HR MS: for $\mathrm{C}_{24} \mathrm{H}_{27}{ }^{79} \mathrm{BrFeN}_{2} \mathrm{O}$ calculated 495.0690, found 495.0677 .

Addition of Diethylzinc to Benzaldehyde

A solution of $\mathrm{ZnEt}_{2}(1.1 \mathrm{ml} 1.1 \mathrm{~m}$ in toluene, 1.2 mmol$)$ was added to a solution of ligand ($0.025 \mathrm{mmol}, 2.5 \mathrm{~mole} \%$) and PhCHO (1 mmol) in dry toluene (2 ml). The mixture was stirred at room temperature for 72 h and then it was quenched by adding EtOH (5 ml) and 1 m HCl . The mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 5 \mathrm{ml})$, the solvent evaporated under reduced pressure and the brown residue purified by chromatography on silicagel column using ethyl acetate-hexane ($1: 1, \mathrm{v} / \mathrm{v}$) as the eluent. The purified 1-phenylethan-1-ol was immediately mixed with pyridine and (1R)-(-)-menthyl chloroformate (molar ratios 1:1.2:1.3) and the mixture was stirred overnight. Enatiomeric purity was then determined by GC analysis of the resulting mixture containing diastereomeric menthoxycarbonyl esters ${ }^{17}$. The results are summarized in Table I.

Synthesis of Schiff Bases 7. General Procedure

Schiff bases 7 were obtained as given above for 1. Thus, compound 7a was obtained as a dark orange solid ($5.55 \mathrm{~g}, 92 \%$) from benzylamine ($2.16 \mathrm{ml}, 19.8 \mathrm{mmol}$) and ferrocenecarboxaldehyde ($4.24 \mathrm{~g}, 19.8 \mathrm{mmol}$) while compound $\mathbf{7 b}$ was isolated as a viscous deep orange oil, which crystallized upon standing ($0.83 \mathrm{~g}, 52 \%$) from FcCHO ($1.070 \mathrm{~g}, 5.0 \mathrm{mmol}$) and (R)-1-phenylethylamine ($0.636 \mathrm{ml}, 5.0 \mathrm{mmol}$).
$\mathrm{FcCH}=\mathrm{NCH}_{2} \mathrm{Ph}(7 \mathrm{a})^{18} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 4.17\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.37$ (apparent t, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 4.66 (br s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 4.68 (apparent t, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 7.22-7.37 (m, 5 H, Ph), 8.24 (unresolved t, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 65.13\left(\mathrm{CH}_{2}\right), 68.58\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.06\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 70.48(\mathrm{CH}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 80.52\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 126.87,127.87,128.48(\mathrm{CH}, \mathrm{Ph}) ; 139.64\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{Ph}\right), 162.20$ $(\mathrm{CH}=\mathrm{N})$. El MS, m/z (relative abundance): 304 (22), 303 (100, $\mathrm{M}^{\bullet+}$), 301 (7), 237 (14, [M $\left.\mathrm{C}_{5} \mathrm{H}_{6}\right]^{+}$), $212\left(10,\left[\mathrm{M}-\mathrm{PhCH}_{2}\right]^{+}\right), 211(8), 208(6), 199\left(16,\left[\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{+}\right), 186\left(7,[\mathrm{FcH}]^{\bullet+}\right), 185$ (9), 159 (4), 146 (7), 133 (4), 129 (14), $121\left(37,\left[\mathrm{FeC}_{5} \mathrm{H}_{5}\right]^{+}\right), 91\left(18,\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}\right), 81(4), 77(5), 65$ (7), 56 (36, Fe^{+}). HR M S: for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FeN}$ calculated 303.0710, found 303.0703. For $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FeN}$ (302.4) calculated: $71.31 \% \mathrm{C}, 5.65 \% \mathrm{H}, 4.62 \% \mathrm{~N}$; found: $71.30 \% \mathrm{C}, 5.79 \% \mathrm{H}, 4.57 \% \mathrm{~N}$.
(R)- $\mathrm{FcCH}=\mathrm{NCH}(\mathrm{Me}) \mathrm{Ph}(7 b) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 1.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8,3 \mathrm{H}, \mathrm{CHMe}\right), 4.10(\mathrm{~s}, 5 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 4.31-4.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.41\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.7,1 \mathrm{H}, \mathrm{CHMe}\right), 4.63,4.70\left(2 \times \mathrm{dt}, \mathrm{J}_{\mathrm{HH}}=\right.$ $\left.2.5,1.3,1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 7.12-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 8.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 24.27$ (CHMe), 68.28, $68.87\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right.$ and CHMe$) ; 68.95\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 69.40,70.31,70.37\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right.$ and CHMe$) ; 80.71\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 126.53,126.66,128.34(\mathrm{CH}, \mathrm{Ph}) ; 145.33\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{Ph}\right), 159.53$ $(\mathrm{CH}=\mathrm{N})$. El MS, m/z (relative abundance): 318 (23), 317 (100, M*), 315 (7), 302 (19, [M Me^{+}), $251\left(9,\left[\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{6}\right]^{+}\right), 212\left(11,[\mathrm{M}-\mathrm{PhCH}(\mathrm{Me})]^{+}\right), 211(9), 199\left(11,\left[\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{+}\right), 186$ (8), $185\left(14, \mathrm{Fc}^{+}\right), 129(12), 121\left(34,\left[\mathrm{FeC}_{5} \mathrm{H}_{5}\right]^{+}\right), 105\left(23,\left[\mathrm{C}_{8} \mathrm{H}_{9}\right]^{+}\right), 77(13), 56(29, \mathrm{Fe}) . \mathrm{HR}$ MS : for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FeN}$ calculated 317.0867, found 317.0866.

Synthesis of Amines 8. General Procedure

Amines 8 were synthesized as given in detail for 2. Compound 7 a ($2.00 \mathrm{~g}, 6.6 \mathrm{mmol}$) in methanol (40 ml) was reduced with $\mathrm{NaBH}_{4}(1.06 \mathrm{~g}, 28 \mathrm{mmol})$ to give, after isolation as given above, amine $\mathbf{8 a}(1.937 \mathrm{~g}, 96 \%)$ as an orange viscous oil. Compound $\mathbf{8 b}$ was obtained similarly from 7b ($0.665 \mathrm{~g}, 2.10 \mathrm{mmol}$) and $\mathrm{NaBH}_{4}(0.328 \mathrm{~g}, 8.7 \mathrm{mmol})$ in methanol (20 ml) and isolated as a viscous orange oil ($0.607 \mathrm{~g}, 91 \%$).
$\mathrm{FcCH}_{2} \mathrm{NCH}_{2} \mathrm{Ph}(8 \mathrm{a}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 3.50,3.79\left(2 \times \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 4.07\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$, 4.08, 4.17 ($2 \times$ apparent $\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$); 7.20-7.34 (m,5 H, Ph). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 48.11, $53.26\left(\mathrm{CH}_{2}\right) ; 67.65,68.25\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 68.32\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 86.86\left(\mathrm{C}_{\mathrm{ips} 0}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 126.82,128.01$, 128.32 (CH, Ph); 140.31 ($\left.\mathrm{C}_{\mathrm{ipso}}, ~ P h\right) . ~ I R ~(N u j o l): ~ 3317$ (br m), 3061 (w), 3086 (s), 3026 (m), 1495 (s), 1357 (m), 1328 (m), 1230 (m), 1105 (vs), 1038 (m), 1022 (m), 1001 (s), 819 (vs), 737 (vs), 699 (vs), 582 (m), 483 (vs). El MS, m/z (relative abundance): 306 (24), 305 (100, $M^{\bullet+}$), 303 (7), $238\left(19,\left[M-C_{5} H_{5}-2 H\right]^{+}\right), 226(6), 225(6), 214$ (9), 213 (23), 212 (47, [M -$\mathrm{PhCH}_{2}-2 \mathrm{H}^{+}$), 200 (37), 199 (25, [$\left.\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{+}$), 186 (12, [FcH$]^{\bullet+}$), 161 (6), 148 (18), 134 (6), $131\left(34,\left[\mathrm{FeC}_{5} \mathrm{H}_{5}\right]^{+}\right), 106(5), 91\left(10,\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}\right), 78(5), 65(6), 56$ (31, $\left.\mathrm{Fe}^{+}\right)$. HR MS: for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FeN}$ calculated 305.0867, found 305.0873.
(R)- $-\mathrm{FCCH}_{2} \mathrm{NHCH}(\mathrm{Me}) \mathrm{Ph}(\mathbf{8 b}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6,3 \mathrm{H}, \mathrm{CHMe}\right), 1.57(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{NH}), 3.34,3.37\left(2 \times \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=13.0,1 \mathrm{H}, \mathrm{AB}\right.$ system of $\left.\mathrm{CH}_{2}\right) ; 3.81\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6,1 \mathrm{H}\right.$, CHMe), $4.06\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.08$ (apparent $\left.\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.13,4.15(2 \times$ apparent $\mathrm{q}, 1 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{4}$); 7.22-7.37 (m, 5 H, Ph). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 24.59$ (CHMe), 46.62 (CHMe), 57.55 $\left(\mathrm{CH}_{2}\right), 67.60,67.70,68.09\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 68.35\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 68.41\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 87.18\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$,
126.67, 126.87, 128.44 (CH, Ph); 145.65 ($\mathrm{C}_{\text {ipso }}, ~ P h$). IR (Nujol): 3324 (br m), 1352 (m), 1306 (m), 1123 (m), 1105 (vs), 1037 (m), 1023 (m), 1001 (s), 819 (s), 763 (s), 702 (vs), 588 (m), 548 (m), 521 (m), 483 (vs). El MS, m/z (relative abundance): 320 (5), 319 (100, M•†), 317 (15), 253 (18, [M $\left.-\mathrm{C}_{5} \mathrm{H}_{6}\right]^{0+}$), 226 (13), 214 (18, [M - PhCH(Me)] ${ }^{+}$), 213 (12), 200 (34), 199 (41, $\left[\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}^{+}\right.$), $186\left(14,[\mathrm{FcH}]^{\bullet+}\right), 152(17), 149(28), 122$ (15), $121\left(45,\left[\mathrm{FeC}_{5} \mathrm{H}_{5}\right]^{+}\right), 105$ (12, $\left[\mathrm{C}_{8} \mathrm{H}_{9}\right]^{+}$), 77 (10, Ph^{+}), 56 (22, Fe^{+}). HR MS: for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FeN}$ calculated 319.1023, found 319.1039. $[\alpha]_{D}^{20}+50.5$ (c 1.0, CHCl_{3}).

Alkylation of 8a with Mel

Amine 8a ($0.100 \mathrm{~g}, 0.33 \mathrm{mmol}$) was dissolved in dry dichloromethane (10 ml), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.114 \mathrm{~g}$, 0.87 mmol) was added, and the reaction flask was flushed with argon. Then, iodomethane ($0.103 \mathrm{ml}, 1.6 \mathrm{mmol}$) was introduced and the mixture was stirred at room temperature for 2 days in the dark. Methanol (3 ml) and water (3 ml) were added, the yellow organic layer was separated, washed with water, and dried over MgSO_{4}. A subsequent evaporation followed by drying under vacuum ($65 \mathrm{~Pa}, 60^{\circ} \mathrm{C}, 1 \mathrm{~h}$) afforded 9 as a yellow microcrystalline solid in quantitative yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 3.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NMe}_{2}\right), 4.30\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.35$, $4.62\left(2 \times\right.$ apparent $\left.\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 4.98,5.10\left(2 \times \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 7.71-7.69(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 48.25\left(\mathrm{NMe}_{2}\right), 65.83,66.64\left(\mathrm{CH}_{2}\right) ; 69.67\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; 70.71\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 72.14\left(\mathrm{C}_{\mathrm{ipso}}\right.$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 72.47\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$. For $\mathrm{C}_{20} \mathrm{H}_{24}$ FelN (460.4) calculated: $52.09 \% \mathrm{C}, 5.25 \% \mathrm{H}, 3.04 \% \mathrm{~N}$; found: $51.78 \% \mathrm{C}, 5.40 \% \mathrm{H}, 2.74 \% \mathrm{~N}$.

Synthesis of Oxazoline 10

Oxazoline $\mathbf{1 0}$ was obtained as given above for compounds $\mathbf{5}$ and $\mathbf{6}$ by stirring a mixture of $\mathbf{7 b}(1 \mathrm{mmol}), 4 \mathrm{~b}(2 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ at $90^{\circ} \mathrm{C}$ (bath temperature) under argon in the dark for 2.5 days. The crude material was purified by chromatography (silica gel, CHCl_{3}), and then recrystallized from hot ethyl acetate to give $\mathbf{1 0}$ as an orange crystalline solid (yield not determined). ${ }^{1} \mathrm{H}$ NMR $\left.\left(\mathrm{CDCl}_{3}\right): 0.94,1.02\left(2 \times \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.7,3 \mathrm{H}, \mathrm{CHMe}\right)_{2}\right) ; 1.38\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $6.5,3 \mathrm{H}, \mathrm{CHMe}), 1.81$ (octet, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.7,1 \mathrm{H}, \mathrm{CHMe} \mathrm{C}_{2}\right), 3.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ox}\right), 3.51,3.65(2 \times \mathrm{d}$, ${ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.0,1 \mathrm{H}, \mathrm{AB}$ system of $\left.\mathrm{FCCH}_{2}\right) ; 3.80\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.5,1 \mathrm{H}, \mathrm{CHMe}\right), 3.87-3.95(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}^{\mathrm{Ox}}$), $3.98\left(\mathrm{dd}, \mathrm{J}_{\mathrm{HH}, 1} \approx \mathrm{~J}_{\mathrm{HH}, 2} \approx 8.0,1 \mathrm{H}, \mathrm{CH}_{2}{ }^{\mathrm{Ox}}\right.$), $4.01\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.09$ (br apparent t, 2 H , $\mathrm{C}_{5} \mathrm{H}_{4}$), 4.17 (br d of apparent $\mathrm{t}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $4.21\left(\mathrm{dd}, \mathrm{J}_{\mathrm{HH}}=8.2, \mathrm{~J}_{\mathrm{HH}, 2}=9.7,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ox}^{\mathrm{O}}\right.$), 4.30 (br d of apparent $\mathrm{t}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 7.21-7.42 (m,5 H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 18.25,18.89$ $\left(\mathrm{CHMe}_{2}\right) ; 19.68(\mathrm{CHMe}), 32.55\left(\mathrm{CHMe}_{2}\right), 46.40\left(\mathrm{CH}_{2} \mathrm{Ox}\right), 49.36\left(\mathrm{CH}_{2} \mathrm{Fc}\right), 59.70(\mathbf{C H M e})$, 67.78, $67.84\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 68.34\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 69.72\left(\mathrm{CH}_{2}{ }^{\mathrm{Ox}}\right), 69.78,70.55\left(\mathrm{CH}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; 71.86$ $\left(\mathrm{CH}^{\mathrm{Ox}}\right), 83.25\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 126.85,127.59,128.25(\mathrm{CH}, \mathrm{Ph}) ; 144.83\left(\mathrm{C}_{\mathrm{ipso}}, \mathrm{Ph}\right), 165.59$ ($\mathrm{C}_{\text {ipso }}, \mathrm{Ox}$). El MS, m/z (relative abundance): $444\left(7, \mathrm{M}^{\bullet+}\right), 379\left(3,\left[\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{5}\right]^{+}\right), 339(10,[\mathrm{M}-$ $\left.\mathrm{PhCH}(\mathrm{Me})]^{+}\right)$, $318(36), 317\left(100,\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{Ox}-\mathrm{H}\right]^{\bullet+}\right.$, isobaric with $\left.[7 b]^{\bullet+}\right), 214(12,[\mathrm{~m} / \mathrm{z} 317-$ $\left.\mathrm{PhCH}(\mathrm{Me})]^{\dagger}\right), 199\left(31,\left[\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Fe}\right]^{\dagger}\right), 186\left(9,[\mathrm{FcH}]^{\bullet}+\right), 160(5), 121$ (39, $\left.\left[\mathrm{FeC}_{5} \mathrm{H}_{5}\right]^{+}\right), 120$ (18), $105\left(33,\left[\mathrm{C}_{8} \mathrm{H}_{9}\right]^{+}\right), 91\left(8,\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}\right), 77\left(19, \mathrm{Ph}^{+}\right), 56\left(19, \mathrm{Fe}^{+}\right)$. HR M S: for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{FeN}_{2} \mathrm{O}$ calculated 444.1864, found 444.1910. [$\alpha]_{D}^{20}-17.4$ (c 1.0, CHCl_{3}).

X-Ray Crystallography

Compound 2b. Crystals suitable for X-ray analysis were obtained by evaporation of a diethyl ether solution. Diffraction data were collected on an Nonius KappaCCD diffractometer equipped with Oxford Cryostream cooler at 150 K using graphite monochromatized $\mathrm{MoK} \alpha$
radiation ($\lambda=0.71073 \AA$) and analyzed by HKL program package ${ }^{19}$. The cell parameters were determined by least-squares fitting from 16230 partial diffractions with $1.0 \leq \theta \leq 26.0^{\circ}$. The phase problem was solved by direct methods (SIR92 ${ }^{20}$). Non-hydrogen atoms were refined anisotropically by full-matrix least-squares on F^{2} (SHELXL97 ${ }^{21}$). Hydrogen atoms were included in calculated positions with fixed $\mathrm{C}-\mathrm{H}$ bond lengths (aromatic $0.93, \mathrm{CH}_{2} 0.97, \mathrm{CH}_{3}$ 0.96, and NH $0.86 \AA$) and assigned $U_{\text {iso }}(H)=1.2 U_{\text {eq }}(X)$, where X is the adjacent C or N.

Compound $\mathbf{2 g}$. Crystals were grown by slow evaporation of a methanol solution. Diffraction data were collected and analyzed as above. The cell parameters were determined by least-squares fitting from 20676 partial diffractions with $1.0 \leq \theta \leq 27.5^{\circ}$. The structure was solved by direct methods (SIR92). Non-hydrogen atoms were refined anisotropically. All hydrogen atoms were identified on a difference electron density map and freely isotropically refined. The refinement was carried out by full-matrix least-squares on F^{2} (SHELXL97).

Compound 9. Single crystals were obtained by recrystallization from hot methanol. Diffraction data were collected as given above for $\mathbf{2 b}$. Cell parameters were determined by least-squares fitting from 16230 partial diffractions with $1.0 \leq \theta \leq 27.9^{\circ}$. The phase problem was solved by direct methods (SIR92). Non-hydrogen atoms were refined anisotropically by full-matrix least-squares on F^{2} (SHELXL97). All hydrogen atoms were identified on the difference electron density maps and freely refined with isotropic thermal motion parameters.

Compound 10. Crystals were grown by recrystallization from ethyl acetate. The dffraction data were collected as given for $\mathbf{2 b}$. The cell parameters were determined by least-squares analysis from 15821 partial diffractions with $1.0 \leq \theta \leq 27.5^{\circ}$. The structure was solved by direct methods (SIR92). Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in calculated positions with fixed $\mathrm{C}-\mathrm{H}$ bond lengths (aromatic CH 0.93 , methine $0.98, \mathrm{CH}_{2} 0.97$, and $\mathrm{CH}_{3} 0.96 \AA$) and assigned $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\text {eq }}(\mathrm{C})$. The refinement was carried out by full-matrix least-squares on F^{2} (SHELXL97).

CCDC-207928 (2b), -207929 (2g), -207930 (9), and -207931 (10) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk).

REFERENCES AND NOTES

1. a) Richards C. J., Locke A. J.: Tetrahedron: Asymmetry 1998, 9, 2377 (a comprehensive review). For recent examples, see, e.g.: b) You S.-L., Zhou Y.-G., Hou X.-L., Dai L.-X.: Chem. Commun. 1998, 2765; c) Park J., Quan Z., Lee S., Ahn K. H., Cho C.-W.: J. Organomet. Chem. 1999, 584, 140; d) Malone Y. M., Guiry P. J.: J. Organomet. Chem. 2000, 603, 110; e) Deng W.-P., You S.-L., Hou X.-L., Dai L.-X., Yu Y.-H., Xia W., Sun J.: J. Am. Chem. Soc. 2001, 123, 6508; f) Takei I., Nishibayashi Y., Ishii I., Mizobe Y., Uemura S., Hidai M.: Chem. Commun. 2001, 2360; g) Miyake Y., Iwata T., Chung K.-G., Nishibayashi Y., Uemura S.: Chem. Commun. 2001, 2584; h) You S.-L., Hou X.-L., Dai L.-X., Yu Y.-H., Xia W.: J. Org. Chem. 2002, 67, 4684. (1'-Phosphinoferrocenyl)oxazolines: i) Zhang W., Yoneda Y., Kida T., Nakatsuji Y., Ikeda I.: Tetrahedron: Asymmetry 1998, 9, 3371; j) Drahoňovský D., Císařová I., Štěpnička P., Dvořáková H., Maloň P., Dvořák D.: Collect. Czech. Chem. Commun. 2001, 66, 588. See also: k) Chesney A., Bryce M. R., Chubb R. W. J., Batsanov A. S., Howard J. A. K.: Synthesis 1998, 413.
2. a) Patti A., Lotz M., Knochel P.: Tetrahedron: Asymmetry 2001, 12, 3375; b) Moreno R. M., Bueno A., Moyano A.: J. Organomet. Chem. 2002, 660, 62.
3. Sutcliffe O. B., Chesney A., Bryce M. R.: J. Organomet. Chem. 2001, 637-639, 134.
4. a) Zhang W., Shimanuki T., Kida T., Nakatsuji Y., Ikeda I.: Tetrahedron Lett. 1996, 37, 7995; b) Zhang W., Shimanuki T., Kida T., Nakatsuji Y., Ikeda I.: J. Org. Chem. 1999, 64, 6247; c) Salter R., Pickett T. W., Richards C. J.: Tetrahedron: Asymmetry 1998, 9, 4239; d) Locke A. J., Pickett T. E., Richards C. J.: Synlett 2001, 141; e) Štěpnička P.: New J. Chem. 2002, 26, 567.
5. For an overview of the application of oxazolines in synthesis, see: a) Meyers A. I., Mihelich E. D.: Angew. Chem. 1976, 88, 321; b) Grene T. W., Wuts P. G. M.: Protecting Groups in Organic Chemistry, 3rd ed., p. 434. Wiley, New York 1999.
6. Some of the of Schiff bases have been synthesized and used as ligands or studied as non-linear optical materials: a) Houlton A., Jasim N., Roberts R. M. G., Silver J., Cunningham S., McArdle P., Higgins P.: J. Chem. Soc., Dalton Trans. 1992, 2235; b) Silver J., Miller J. R., Houlton A., Ahmet M. T.: J. Chem. Soc., Dalton Trans. 1994, 3355; c) Bosque R., López C., Sales J., Solans X., Font-Bardía M.: J. Chem. Soc., Dalton Trans. 1994, 735; d) Pal S. K., Alagesan K., Samuelson A. G., Pebler J.: J. Organomet. Chem. 1999, 575, 108; e) Pal S. K., Krishnan A., Das P., Samuelson A. G.: J. Organomet. Chem. 2000, 604, 248. See also: f) Hecht E.: Z. Anorg. Allg. Chem. 2001, 627, 2351.
7. a) Meyers A. I., Temple D. L., Nolen R. L., Mihelich E. D.: J. Org. Chem. 1974, 39, 2778; b) Pridgen L. N., Miller G.: J. Heterocycl. Chem. 1983, 20, 1223.
8. Rossano L. T., Plata D. J., Kallmerten J.: J. Org. Chem. 1988, 53, 5189.
9. Oguni N., Omi T.: Tetrahedron Lett. 1984, 25, 2823.
10. Soai K., Niwa S.: Chem. Rev. (Washington, D. C.) 1992, 92, 833.
11. a) Butsugan Y., Araki S., Watanabe M. in: Ferrocenes (A. Togni and T. Hayashi, Eds), Chap. 3, p. 173. VCH, Weinheim 1995; b) Bolm C., Muñiz-Fernández K., Seger A., Raabe G., Günther K.: J. Org. Chem. 1998, 63, 7860; c) Bolm C., Hermanns N., Hildebrand J. O., Muñiz K.: Angew. Chem., Int. Ed. 2000, 39, 3465; d) Bolm C., Hermanns N., Kesselgruber M., Hildebrand J. P.: J. Organomet. Chem. 2001, 624, 157.
12. Baše T., Císařová I., Štěpnička P.: Inorg. Chem. Commun. 2002, 5, 46.
13. Structural data have been retrieved from the Cambridge structural database; refcode: KAPHOY: $(\mathrm{Fc}) \mathrm{C}-\mathrm{CH}_{2} \quad 1.507, \quad \mathrm{FcCH}_{2}-\mathrm{NH} \quad 1.469, \quad\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right) \mathrm{C}-\mathrm{CH}_{2} \quad 1.503$, and $\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right) \mathrm{CH}_{2}-\mathrm{N} 1.448 \AA \AA$ N-C-N 113.0°. Original reference: Hess A., Brosch O., Weyhermueller T., Metzler-Nolte N.: J. Organomet. Chem. 1999, 589, 75.
14. a) Nishibayashi Y., Segawa K., Arikawa Y., Ohe K., Hidai M., Uemura S.: J. Organomet. Chem. 1997, 545-546, 381; b) Nishibayashi Y., Uemura S.: Synlett 1995, 1088; c) Park J., Lee S., Han K., Cho C.-W.: Tetrahedron Lett. 1996, 37, 6137. See also ref. ${ }^{11 \mathrm{c}}$
15. Breit B.: J. Mol. Catal. A: Chem. 1999, 143, 143.
16. Breton P., André-Barrès C., Langlois Y.: Synth. Commun. 1992, 22, 2543.
17. Westley J. W., Halpern B.: J. Org. Chem. 1968, 33, 3978.
18. Lopéz C., Bosque R., Solans X., Font-Bardía M., Tramuns D., Fern G., Silver G.: J. Chem. Soc., Dalton Trans. 1994, 3039.
19. a) Otwinowski Z., Minor W.: HKL Denzo and Scalepack Program Package by Enraf-Nonius. For a reference, see: b) Otwinowski Z., Minor W.: Methods Enzymol. 1997, 276, 307.
20. Altomare A., Burla M. C., Camalli M., Cascarano G., Giacovazzo C., Guagliardi A., Polidori G.: J. Appl. Crystallogr. 1994, 27, 435.
21. Sheldrick G. M.: SHELXL97. Program for Crystal Structure Refinement from Diffraction Data. University of Göttingen, Göttingen 1997.

[^0]: ${ }^{a}$ For conditions, see Experimental. Alkylation in the presence of ligands $\mathbf{6 a}$ and $\mathbf{6 f}$ gave under the same conditions only dark intractable mixtures which contained no 1-phenyl-propan-1-ol according to GC MS analysis. ${ }^{\text {b }}$ Determined by GC MS analysis after converting to diastereomeric (-)-menthoxycarbonyl esters (see Experimental). Configuration was not assigned due to a very low asymmetric induction.

[^1]: ${ }^{\text {a }} \mathrm{Cp1}, \mathrm{Cp} 2$ denote the cyclopentadienyl rings C1-C5 and C6-C10, respectively. Cg1 and Cg 2 are the respective ring centroids.

[^2]: ${ }^{\text {a }}$ Diffractions with $F_{0}>4 \sigma\left(F_{0}\right) \cdot{ }^{b} R(F)=\Sigma| | F_{0}\left|-\left|F_{c}\right| / \Sigma\right| F_{0} \mid, w R\left(F^{2}\right)=\left[\Sigma\left(w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\right) /\left(\Sigma w\left(F_{0}^{2}\right)^{2}\right)\right]^{1 / 2} .{ }^{c} S=\left[\Sigma\left(w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\right) /\left(N_{\text {diffrs }}-\right.\right.$ $\left.\left.N_{\text {params }}\right)\right]^{1 / 2}$. ${ }^{d}$ The data were corrected for absorption using a numerical routine (SORTAV) incorporated in the diffractometer software. Transmission coefficient range: 0.541-0.785. ${ }^{e}$ Flack's enantiomorph parameter: 0.01(1).

